
105

Patrick Wolf, Martin Steinebach, and Sascha Zmudzinski
Fraunhofer Institute for Secure Information Technology (SIT)
Rheinstr. 75, 64295 Darmstadt, Germany
[patrick.wolf | martin.steinebach | sascha.zmudzinski]@sit.fraunhofer.de

ADAPTIVE SECURITY FOR VIRTUAL
GOODS - BUILDING AN ACCESS LAYER

FOR DIGITAL WATERMARKING

Abstract: Digital watermarking has become an accepted media security technology used in
diverse application areas from copyright and integrity protection to broadcast monitoring.
Watermarking algorithms are similarly diverse. They vary in media type, required knowledge (i.e.
parameters) and implementation language. These differences make it hard for application
developers to integrate watermarking into their applications and even harder to maintain and
upgrade applications already incorporating watermarking.

This paper proposes an approach to provide generic access to watermarking functionality through
a light-weight framework called AlgorithmManager. It is independent from any algorithm-
specific properties like implementation language, medium type or required parameters, so that
also algorithms implemented in C/C++ become usable within the framework.

Keywords: Usage of Digital Watermarking, AlgorithmManager

1. Motivation

Digital watermarking has become the security mechanism of choice for
many novel distribution platforms of multimedia content. The great flexibility
coming with watermarked goods and the customer friendliness derived from
this, have caused a wide acceptance of this technology. Watermarking solutions
used in B2C multimedia distribution are usually so-called transactional
watermarks, embedding on the fly transaction codes for customer identification.

1.1 Challenges
From the wide acceptance new challenges have risen. One is the required

high embedding speed, solved e.g. by preprocessing [1] within watermarking
container solutions [10]. Another challenge is the flexible integration of the
watermarking technology within the distribution platforms. As the market is in
movement these days, new approaches for selling, renting and distributing
virtual multimedia goods come and go. Lengthy integration times of security

106

measures are often inacceptable in an industry building shop solutions on Open
Source platforms offering most of the required functionality with minimal
changes.

Digital watermarking has three characteristics which make it hard to use it
in a similar manner:

• Watermarking solutions are usually implemented in C code to ensure
good processing times

• Watermarking requires parameter optimization for different scenarios
and content types

• The development of watermarking algorithms has not yet come to an
end, new solutions are proposed within comparatively short time

So, when integrating watermarking embedding and/or detection
functionality into applications, programmers often find that they have to deal
with many algorithm-specific details before their application actually can do
”watermarking”. Such details include the algorithm’s commandline syntax or its
library interface, respectively, the type or even the format of media to be
watermarked, required technical parameters like watermark-strength and length
of the message or such essential issues as the representation of the watermark
message or the secret watermark key: Is it binary or a string?

Such simple but important details are obstacles for watermarking in
becoming a black box principle; black box meaning that for using watermarking
no further knowledge about the interior is needed. ”Encryption” is such an
example of a successful black box: It is a widely known principle, required
parameters are mostly clear and it can be easily integrated into applications.
Even though watermarking is fundemantally different from encryption [2], the
AlgorithmManager framework described in this work, should be seen as a (first)
step into the same direction and should pave the way for watermarking a more
widely used security technology.

This calls for a middle layer offering the following functionality to potential
users of watermarking algorithms or respectively their technical staff setting of
the content distribution platforms.

• Java-based Open Source for transparency and easy adaption into
existing frameworks or software solutions

• Independence from individual watermarking algorithms to simplify
exchange of algorithms when necessary

• Flexible watermarking parameter handling allowing easy adaption of
new parameter sets and options coming with new versions of
watermarking algorithms

In the following sections we described an approach providing such a middle
layer already successfully applied in customer solutions connecting C-based
watermarking code with Java-based business scenarios.

107

1.2 Use case
To provide a more concrete perspective on the potential impact of a unified

way to deal with watermarking algorithms, we discus application scenarios for
the audio watermarking algorithm provided by our institute.

The most relevant applications include:
• Customer identification watermarking for online shops selling music or

audio books to end consumers.
• Copyright watermarking for online shops selling music or audio books

to end consumers or for public audio archives preserving the cultural
heritage.

• User identification for promotional copies distributed via Internet as
mp3 downloads or as individually marked CDs as a business to
business service.

• Watermarking sound tracks for Video-on-Demand systems for the
identification of distribution channels or users.

• Automated Internet search mechanisms for copyright infringements of
any type of watermark protected content listed before.

All these scenarios use the same basic watermarking algorithm but need to
integrate into a multitude of different business environments. For example,
online shops usually integrate watermarking technology either in the content
management system or the web content delivery service. Watermarking
promotional CDs requires the integration of the watermarking process into the
CD-duplication-system. In all these cases, various operating systems and
software environments may be found as a host for the watermarking algorithm.
This includes Java, C-derivates, scripting languages and Delphi, running on
Linux, Windows and Macintosh systems.

Sometimes several audio watermarking embedding solutions from different
institutions or watermarking companies have to integrated because online shop
service providers or manufacturers of CD duplication devices may incorporate
watermarking soultions from different partners. This applies even more for the
related watermarking detection solutions integratied in Internet search systems
for copyright infringements[11]: Here, the clients from the content industry, e.g.
music labels, publishers or movie studios, usually have use different partners for
both the distribution and the watermark protection.

The same holds for the problem of evaluating and benchmarking of
different watermarking solutions from different instututions and companies with
respect to sound quality anf robusness and security against attacks [6]. One
example is the so-called Stirmark benchmark audio watermarking [9]. For such
an evaluation system external watermarking algorithms have to be integrated.

Without a middleware, every time a new environment wants to access the
algorithm, new interface structures may be necessary. With the help of such a

108

middleware, only the core algorithm needs to be transferred to the different
operating systems, calling the algorithm by the application is then done by the
middleware which may be platform-independent and transparent. This
drastically reduces the efforts and therefore the cost of integrating the
watermarking algorithm within user systems. Even more when the customer
may be interested in switching between watermarking algorithms at a later point
as may be the case in the video on demand environment where the user may
want to apply video watermarking when this technology is more advanced.

2. Framework Design

The goal of the AlgorithmManager is to take an arbitrary watermarking
algorithm, copy its implementation into a directory, fill out a configuration file
and be ready to use it in any application. Applications should be freed from the
burdens each individual implementation of watermarking functionality brings
them.

The first step is therefore to condense watermarking functionality into a
generic set of interfaces that still allow individual configuration of algorithms.
This results in the definition of an embedder interface that takes a cover
medium, a watermark message and a secret key and returns a watermarked
medium as described many time in the literature (e.g. in [3], [8]). Detection
reads a watermark message by taking a medium to be analyzed and the key as
parameters. This is basically all an application needs to know about
watermarking.

The hard part about watermarking is the implemenation of algorithms that
do this and satisfy all necessary imperceptibility, robustness, capacity and
security constraints, issues not discussed within this work..

2.1 Interfaces
It is obvious that watermarking functionality must at least encompass

embedding a watermark message into a cover medium and retrieval of a
watermark message from a watermarked medium. In addition, both parts of
watermarking might require additional parameters special to individual
algorithms.

Some parameters like the watermark strength are common to some (or even
most) algorithms, some are unique to individual algorithms. This means that
there is no chance of standardizing which parameters there need to be
mandantorily specified. there existence. Parameters in the AlgorithmManager
are thus simply modeled as key-value-pairs.

109

With respect to the cover, one can differentiate between several ways of
representing media: as a file, as a http-, ftp-or rtsp-URL, as a device name (e.g.
/dev/audio) or as a stream (as for example done in peer-to-peer networks like
Gnutella). This is modeled by the AlgorithmManager as specialized Interfaces
for each way of how media is represented.

2.2 WatermarkMessage
The watermark message can be represented in different ways, too. Even

though every information can be represented by a binary code, it is often
feasible to represent the watermark message as a string of characters or hex
values. An embedded ASCII text string whose meaning can be directly
understood by any person might be more convincing (e.g. in court) than a
binary sequence that has to be interpreted first before it can be understood.
Therefore the WatermarkMessage encapsulates both type of representations.
Since especially in robust watermarking capacity is a crucial and sparse
resource, the binary representation must be bit-exact. But binary sequences are
not represented as a sequence of bits; actually they are represented by bytes.
Therefore the length of the message is a necessary parameter, without this
information 5 bit messages could not be differentiated from 7 bit messages. The
same considerations are also valid for the secret key and this class is thus
modeled analogously.

2.3 Configuring Algorithms
The previous sections modeled watermarking functionality in a highly

abstract way. At some point, a mapping to the concrete algorithms is necessary.
This is the task of a configuration file the algorithm developer needs to provide.
This (XML-) configuration file provides a mapping from the parameters defined
in the embedder and detector interfaces to the parameters understood by
algorithm thus building the bridge between algorithm and framework. In
addition, it specifies what (other) parameters the algorithm has and what
structure these have.

Consider the following example:

<algorithm name="MyAlgorithmName">
<description>

This algorithm is used for watermarking images with numbers
</description>
<mediatypes>

<mediatype>image/*</mediatype>
</mediatypes>
<allowed-characters>[0-9]*</allowed-characters>
<embedder>

<embedder-class>

110

mypackage.EmbedderClass
</embedder-class>
<ordered-params>

<ordered-param name="Param1"/>
<ordered-param name="Param2"/>

</ordered-params>
</embedder>
<detector>

<detector-class>
mypackage.DetectorClass

</detector-class>
<ordered-params>

<ordered-param name="Param2"/>
</ordered-params>

</detector>
<params>

<param name="Param1" default="true" description="some boolean"/>
<param name="Param2" default="123456"

description="a common numerical parameter"/>
</params>

</algorithm>

This (simple) description contains one algorithm for watermarking images.
In addition to the media types that an algorithm is able handle and a regular
expression defining the structure of possible watermark messages (here numbers
only), the file has three major sections: one describing the embedder, one
describing the detector and one defining the parameters. The <embedder-class> tag
gives the fully qualified class name of the code that implements the embedder
part of the algorithm (detection works analogously). The AlgorithmManager
uses a ClassLoader to load this class during runtime . Which parameters the
embedding uses (and in what order) is defined in the <ordered-params> section.
Since some parameters are common to embedding and detection, they are
collectively defined in the <params> section. During runtime, parameters can be
set by specifying name-value-pairs. This allows simple configuration of
whatever parameters the algorithm requires.

3. Integration

After specifying the integral components of the framework in the previous
section, this section will show how algorithms can be integrated into the
framework. Please note, that all examples involve embedder interfaces -
detection works analogously.

3.1 Java-based watermarking algorithms
Since the framework is written in Java, integration of Java-based algorithms

is trivial. As described in section 2.3, the configuration file contains the fully

111

qualified class name of the class implementing the embedder interface(s) thus
defining the functionality simply means implementing the interfaces. With the
help of the Java Reflection API (java.lang.reflect) the class is then loaded and
instantiated during runtime. This method also allows to add or change
watermarking algorithms during the runtime of the application thus facilitating
maintenance.

3.2 Algorithms provided as C-based Libraries
For other algorithms defined in different programming languages,

integration is a bit more complicated. For directly integrating C-based code (i.e.
C or C++) into Java the Java Native Interface (JNI) can be used [5]. The
keyword native before a Java method signals that the method is externally
implemented by native code -like code generated by C compilers. In order to
facilitate creation of such code, it is possible to (automatically) create C header
files containing the signatures of the methods that have to be implemented. JNI
also translates data types and major classes (like Java:String into C++:jstring).
So on the Java side, we have implemented a class (called DllEmbedder) that
implements embedder and detector interfaces and translates these into ”native”
methods. Therefore all algorithm developers implementing in C have to do in
order to integrate their algorithms into the AlgorithmManager is to implement
this header file and fill out the configuration file specifying the DllEmbedder as
the <embedder-class>. This method should also work with libraries written in other
programming languages, but this has not been tested yet.

3.3 Algorithms provided as executables
If algorithms are not available as libraries, they are at least available as

executable files. If they can be executed in a command line mode (without
requiring human interaction) it is also possible to integrate them into the
AlgorithmManager framework. This is the task of the ExeEmbedder. This Java
class implements the embedder interfaces and uses the information in the
configuration file to generate a command string, which is then executed on the
command line (using a java.lang.Runtime instance). One challenge of this
approach is the transfer of information: Only textual parameters can be included
in a command string. Therefore the ExeEmbedder only implements the
URIWatermarkEmbedder Interface and watermark messages, which can be
binary, are given as files. In a command string identification of parameters is
done in two ways: By order or by prefixes (like key ”topSecret”). All this
information has to be included into the configuration file, which makes the file a
little more complex. The example below shows a watermarking executable that
embeds textual messages into MPEG video files. A command line call of this
executable might look like this:

112

.\VideoWM_DEW.exe EMBED myCovermedium.mpq myTargetMedium.mpg messageFile.txt topSecret

Please note, that for this type of integration it is very hard to exchange
information between the application running the AlgorithmManager and the
watermark executable (in both directions). Therefore the ExeDetector requires
algorithms to output the retrieved message into a file. This spares the
ExeDetector from parsing the command line output for the message (see param
OUTFILE URI). With the approach of the ExeEmbedder it should be possible
to integrate most algorithms into the AlgorithmManager even though the first
two approaches are preferable, since they offer more flexibility and simple
exchange of information.

4. Status quo, Future Work and Conclusions

Our proposed AlgorithmManager framework is already integrated in our
own “Watermarking Portal” described in [4], a generic webservice where users
can upload digital media files to embed or detect watermarks (for
demonstrational purpose only). The AlgorithmManager is also one important
element of our MediaSearch Framework that provides an automated search
service for copyright infringements of watermarked protected media files on the
Internet.

Next steps in the development of the AlgorithmManager could be the
exploration of native approaches that are not based on C. An integration of
algorithms implemented with MatLab might proof beneficial. So far the media
are simply represented as streams or URIs. This provides only access to the
essence (the pure media data). Further information about the media like its
mime-type or codec could facilitate selecting of appropriate algorithms. But
most importantly, this framework should be tested in many fundamentally
different application areas and with many different algorithms to verify if all
assumptions prove valid. In addition, the use of Java as an implementation
language has to be justified and its influence on critical issues like performance
has to be monitored.

Finally, the AlgorithmManager could be used to facilitate translation of user
requirements into concrete algorithm parameters. Non-expert users often lack
the knowlegde how to parametrize a watermarking algorithm so that it gives
them the aspired level of transparency, robustness and security. The
AlgorithmManager could help such users to express their wishes in more
generic, maybe even non-technical terms and then negotiates the exact
parameters with the concrete algorithm (see [7]).

Summarizing, this paper proposed a light-weight framework based on Java
called AlgorithmManager. The AlgorithmManager allows application
programmers to easily integrate watermarking functionality into their

113

applications independent of concrete algorithms by a set of generic interfaces.
Algorithm developers provide implementations of these interfaces and register
their algorithms at the AlgorithmManager defining the specifics of their
algorithm in a configuration file. It is possible to register algorithms
independently of their implementation language, so that for example also
C/C++ based algorithms or simply executables can be used within the
AlgorithmManager. Frameworks like the AlgorithmManager should pave the
way for watermarking to become a black-box functionality that can be easily
integrated into other productive applications, easily updated, upgraded and
maintained in the productive live system and might be chance to standardize the
usage of watermarking.

From the perspective of a user, simple and fast integration of digital
watermarking may even be more desirable than having a standard for digital
watermarks as the security concepts based on watermarking are often private
activities not shared with the public with respect to detectors, embedded
information and retrieval results. Therefore a platform providing an universal
interface between applications and watermarking software may increase the
usability of watermarking dramatically and enable a larger number of users to
apply this technology.

Acknowledgements

The work described in this paper has been partially funded by the CASED
Center of Advanced Security Research Darmstadt” (www.casedweb.de)
supported by the Federal State of Hessen, Germany, through the LOEWE
programme.

References

[1] ARNOLD, M.; HUANG, Z., FAST Audio Watermarking: Concepts and
Realizations, In: Delp, E.J., Proceedings of Electronic Imaging, Science
and Technology; Security, Steganography, and Watermaking of
Multimedia Contents Conference VI: January 2004, San Jose, CA, USA.
pp. 105-115, 2004.

[2] INGEMAR J. COX, GWENAEL DOERR, and TEDDY FURON.
Watermarking is not Cryptography. In 5th International Workshop on
digital Watermarking, IWDW 2006, volume 4283/2006, pages 1-15.
Springer Berlin / Heidelberg, 2006.

114

[3] INGEMAR J. COX and MATT L. MILLER. The first 50 years of
electronic watermarking. IEEE Journal of applied Signal Processing,
2:126–32, 2002.

[4] FRAUNHOFER SIT. The Fraunhofer Watermarking-Portal, March 2006.
http://watermarkingportal.sit.fraunhofer.de/.

[5] SHENG LIANG. The Java Native Interface: Programmer’s Guide and
Specification. Addison-Wesley Professional, 1999.

[6] FABIEN A. P. PETITCOLAS, ROSS J. ANDERSON, and
MARKUS G. KUHN. Attacks on copyright marking systems. In David
Aucsmith, editor, Information Hiding, Second International Workshop,
IH98, pages 219–239, Portland, Oregon, USA, April 1998. Springer-
Verlag.

[7] MARTIN STEINEBACH and JANA DITTMANN. Universelle
Parameterübergabe für digitale Wasserzeichen. In Patrick Horster, editor,
Tagunsgband DACH Security Bestandsaufnahme und Perspektiven,
pages 131–140. IT-Verlag, 2003.

[8] ADRIAN SEQUEIRA and DEEPA KUNDUR. Communication and
Information Theory in Watermarking: A Survey. In Proceedings of SPIE,
Multimedia Systems and Applications IV, pages 216–227.

[9] MARTIN STEINEBACH, ANDREAS LANG, JANA DITTMANN, and
FABIEN A. P. PETITCOLAS. Stirmark benchmark: Audio
watermarking attacks based on lossy compression. In Proc. SPIE Security
Watermarking Multimedia, pages 79–90.

[10] STEINEBACH, HAUER, WOLF, Efficient Watermarking Strategies,
in: Automated Production of Cross Media Content for Multi-Channel
Distribution, S. 65-71, IEEE, New York, ISBN: 9780769530307.

[11] STEINEBACH, WOLF, On the necessity of finding content before
watermark retrieval: Active search strategies for localizing watermarked
media on the Internet, in: Multimedia Forensics and Security, Chang-
Tsun Li (edt.), Idea Group Publishing, ISBN: 1599048698 , S. 106- 119,
2008.

