
79

Mario Kubek
Technical University of Ilmenau, Germany
mario.kubek@tu-ilmenau.de

Hans Friedrich Witschel
University of Leipzig, Germany
witschel@informatik.uni-leipzig.de

A SYSTEM FOR AUTOMATIC QUERY
EXPANSION IN A BROWSER-BASED

ENVIRONMENT

Abstract: This paper introduces a system for automatic query expansion. It is aimed at helping
users to search for text documents in the World Wide Web through the usage of local text corpora
residing on the user’s computer. These text documents are used to select appropriate terms to
expand search queries. With this technology the search context is not just generated on the server
side of a web search engine, but emerges right on the user’s PC. This helps to consider the
existing local knowledge stored on a computer right before a maybe imprecise query is sent.
Users searching in an unknown problem domain can therefore expect more accurate search
results. But even experts in an area can get benefit from this, as their queries will likely not be
expanded with improper terms, when using documents of their area of expertise. Even queries
containing homonyms can be properly expanded as well. Another advantage is the narrowed
amount of search results of an expanded query. The technical implementation is based on a
Firefox browser extension, called “FXResearcher”, which is composed of a full text indexer and a
module for query expansion.

Keywords: query expansion, browser extension, search engine, local text corpora, full text
indexing, information retrieval, Firefox, P2P, Java

1. Motivation and Introduction

Private computers store a huge amount of data such as text documents. This
knowledge is usually hidden from web search engines and a user can only use
their contents with own efforts when conducting an online search. Search
engines like Google [1] try to help their users in narrowing the amount of search
results by offering suggestions to expand queries with terms that often occur
with the requested terms in documents or based on frequently entered additional
terms. Hence the search context for a query is created on the server side. But the
local knowledge on a client computer might be sufficient and maybe more
adequate to build proper queries right before the search request is sent. Under
the assumption that the requesting user’s computer stores documents matching a

80

query’s topic which contain terms that are likely candidates for query
expansion, this new approach for client-sided query generation could result in
more relevant search results matching the interests of the requesting user. This
paper addresses this approach. We herein introduce a system that is capable of
automatic query expansion through the usage of local text documents, while it is
embedded in a Firefox web browser extension. This extension is called
“FXResearcher” (short for “Firefox Researcher”) and is composed of a full text
indexer and a module for query expansion, called “Researcher”. The basic
workflow is as follows: It takes a user’s query, tries to find matching documents
on the local computer, calculates terms to expand this query based on a selected
subset of the matching documents and sends the expanded queries to a web
search engine like Yahoo! [2] or Google [1]. We show that query expansion
performed on the user’s computer can bring up promising search results. This
way the building of search queries is directly influenced by the local knowledge
and the search context is created before the request is sent to the web search
engine. In the next chapter we will give a short introduction to query expansion
in general before we will describe the functionality of the “Researcher”. Chapter
four deals with the architecture of “FXResearcher” and the reasons why we
chose a browser extension to implement the above mentioned functions. We
will also describe how the integrated modules work together. Chapter five
provides some results of conducted tests with “FXResearcher” before chapter
six gives a view on how it will be extended with a peer-to-peer component in
the future.

2. Query Expansion

The driving force behind the development of query expansion techniques
was to find solutions to the vocabulary mismatch problem. A search for e.g.
“notebook” should also return results for its synonym “laptop”. Therefore the
aim is to expand queries with their synonyms and other related words in order
to receive more relevant results. For instance a related word to the query
“crocodile” might be “alligator”. To find such query expansion terms several
techniques have been developed in the recent years, of which some will be
mentioned here. As an example, the often used relevance feedback strategy by
Rocchio [3] adds terms of relevant documents to a query and subtracts terms of
non-relevant documents. The decision whether a document is relevant or not is
made by the user (Rocchio’s method). If this relevance is automatically
calculated without user intervention we speak of pseudo relevance feedback.
The Vector Space Model (VSM) is often used to automatically determine the
rank of documents by calculating the deviation of angles between the
documents’ term vectors and the query vector and is well suited for automatic

81

relevance feedback [4]. A possible approach to expand a query is to select terms
with the highest weight of the most similar documents, in case term weighting
has been performed, e.g. using the TF-IDF model [5]. Another method based on
the VSM is Latent Semantic Indexing (LSI) [6] which can be used to
automatically extract concepts of document collections by mapping
synonymous terms to the same dimension. It reduces the dimensionality of the
original term-document-matrix. A problem is of course the interpretation of the
gained dimensions. Queries can therefore be expanded with terms of the found
concepts in order to get more relevant search results. Especially spreading
activation networks [7][8] as models for connectionist information retrieval are
well suited for query expansion because term expansion is one of their inherent
properties. Related and connected terms can be easily found with this technique.
For instance, given a term-document-matrix (like in the VSM) a bipartite graph
of terms and document nodes with weighted edges is built. Then the node of the
query (when found) is activated and its energy is distributed among the edges of
connected nodes. Nodes with an activation level greater than a specific
threshold are related to the initial query. In our approach we combine a
relevance feedback mechanism to assist the user in selecting proper documents
for query expansion with a spreading activation algorithm that returns highly
activated terms in the selected document collection which are then used as
expansion terms. Next we will describe how the “Researcher”, our basic
implementation for query expansion, works and explain the relevance feedback
mechanism afterwards.

3. The Researcher

The task of the “Researcher”-component in “FXResearcher” is to generate
expansion terms to a given query Q by algorithmically selecting those terms out
of a local document set D1 in order to build expanded queries. These queries are
then sent to a web search engine. Optionally, the 10 best results for each
expanded query will be automatically downloaded and ranked according to D1.
This module was originally designed and written as a standalone solution based
on Java. It was then modified to work in a Firefox extension to increase the
usability and provide a greater interactivity during the search process. The
“Researcher” was conceived in the project “Search for text documents in large
distributed systems” supported by Deutsche Forschungsgemeinschaft (DFG). It
is working for German and English text documents. The applied software
components for semantic text analysis were provided by the NLP department of
the University of Leipzig [9].

Now we want to describe in detail, how the implemented query expansion
method works.

82

• At first the user enters a query Q and gives a document set D1 for query
expansion.

• Then a profile is calculated using D1 by concatenating all texts in D1 to
an aggregation text T and extracting the most significant k words of T.
The significance is determined through the usage of a well-balanced
reference corpus. With this corpus it is possible to estimate the
frequency of words in everyday-language. The usage of such sample
collections was proposed by [10] and [11]. We use a likelihood ratio
measure to compare the relative frequency of a term in T to its relative
frequency in the reference corpus because of its proper mathematical
foundation [12]. Terms whose frequency in T significantly surpasses
the one estimated from the reference corpus, will be ranked highly.

• The aggregation text T is further used to calculate significant co-
occurrences for each of the k words in the profile. These co-occurrences
are saved in the co-occurrence graph G using a matrix.

• A spreading activation algorithm is then performed on this graph, which
leads to an activation level and ranking for each of the k words in the
profile related to the given query Q, whose elements are highly
activated at the beginning and at the end. The n highest ranked words in
the profile are then considered the expansion set E.

• Now the expanded queries (Q1…Qm) are generated by randomly
determining the length of the current query Qi and then using the
activation levels (as a probability distribution) to determine the
positions of the selected elements of E.

• The expanded queries are now sent to Yahoo! [2] or Google [1].
• The “Researcher” then optionally downloads and ranks the 10 best

results for each query while avoiding duplicates among the newly found
documents. This is called the document set D2. To determine the
ranking of the documents in D2, the profile and the terms of the
elements in D2 are considered as vectors and their cosine similarity is
calculated.

If it occurs that the initial query Q can not be expanded with the document
set D1 it might be the reason that the topics in D1 differ too much among the
documents or from the query itself. In this case only the initial query Q is sent.
Therefore it is sensible to select documents with topics matching the query Q,
as documents with homogeneous topics will likely result in more suitable
expansion terms. How “FXResearcher” helps the user to select those documents
as a relevance feedback will be discussed in the next section.

83

4. The Firefox Extension “FXResearcher”

After the first version of the “Researcher” had been developed and brought
up useful results in expanding query terms, we wanted to give it a graphical
interface that would be easily usable. Therefore we decided to integrate the
“Researcher” into a browser extension for Firefox, as this web browser offers
many powerful application programming interfaces (APIs), e.g. to build rich
graphical user interfaces (GUI). It is even possible to run Java code from within
an extension and to conveniently present search results on a webpage. We
called this extension “FXResearcher”. The user should not notice a big
difference from the known browsing experience when using this extension, as it
can be controlled via a local webpage that is delivered with “FXResearcher”.
The query results are also shown on this page.

4.1 The Architecture of “FXResearcher”
As mentioned above, the “Researcher” uses a set of documents to build

query expansion terms. The selection of proper documents for this purpose is an
immanent problem. The documents should semantically match a query in order
to produce expansion terms so that the expanded search will bring up acceptable
results. Therefore we decided to integrate a desktop search (full text indexer by
the Leipzig NLP department [9]) into the extension beside the query expansion
module.

Figure 1. Architecture of “FXResearcher”

The indexer has the purpose to recursively scan specified local directories
for documents and to incrementally index them as they are found. These
documents can then be selected by the user to be used for query expansion. To
select only proper documents, the user is given a small portion of the text
around the matching terms for each found document. This way the user can
easily judge a document’s relevance to a query. As a relevance feedback this
solution promises to deliver topically homogeneous expansion terms during the
query expansion process. The gained expanded queries can be further reviewed
by the user before they are sent to the web search engine. At the time of writing

84

this paper the web search results of the expanded queries are provided by the
Yahoo! web search API [13]. Figure 1 shows the architecture of
“FXResearcher”.

4.2 User Guidance
A search with “FXResearcher” is conducted in these main steps:
• The user starts a search for local documents, giving an initial query
• The indexer responds with a list of documents matching this query
• The user selects some of these documents for query expansion and

starts the “Researcher” (query expansion process)
• The user selects some of the suggested expanded queries and sends

them to a web search engine
• The results of the expanded queries are presented on a webpage (fig. 2)

Figure 2. Web Search Results for Expanded Queries

It is even possible for the user’s convenience to automate the process of
selecting local documents and submitting expanded queries to the web search
engine, so that step three and four can be carried out without user intervention.
For this purpose the user can specify a maximum number of local results
(documents) that should be automatically used for query expansion and a
maximum number of expanded queries to be sent to the web search engine.

85

4.3 Preserving Privacy
Admittedly, the last-mentioned feature can arise privacy issues as the

automatically selected documents may contain confidential or private data such
as bank account information that might become part of expanded queries.
Therefore it is sensible to choose a separate folder with noncritical documents
to be indexed. Of course it should be avoided to give the indexer access to the
root directory of the computer.

5. Test Scenarios

In our experimental setup we chose several queries of different topics and
let the “Researcher” expand these queries with a set of found local documents
by the aforementioned indexer. A maximum of 10 expanded requests and a
maximum of 10 results per request were allowed. We used the web search
engine Yahoo! [13] to send the expanded queries to. Next we will show the
results of three conducted tests with the “Researcher” in comparison to the
suggestions for related queries by Google and Yahoo!:

• Test 1: Topic „P2P und Semantic Web“
Query: “Semantic Web”

Results of: “Researcher”

• Given: 7 PDF-documents found with Yahoo!
• Found query expansion terms:

Peer-to-Peer, Peer-to-Peer Distributed,
Peer-to-Peer Piazza, Peer-to-Peer Services,
Services, Smart Services, Piazza Services

• Additionally found documents matching the topic: 33

 Suggested related terms by “Google Suggest”:
• wikipedia, wiki, webbing, ontology, company, owl,

scientific american, agents, business, gang

 Suggested related terms by “Yahoo! Suggest”:
• services, folksonomy ontology, xml, find similar music,

berners lee, concept, expert
• Test 2: Topic “Affiliate Marketing“

Query: “affiliate”

Results of “Researcher”:

86

• Given: 6 PDF-documents found with Yahoo!
• Found query expansion terms:

marketing advertisers, advertisers,
advertisers network, marketing online,
network fees, marketing, network marketing,
network, advertisers publishers, network advertisers

• Additionally found documents matching the topic: 61
Suggested related terms by “Google Suggest”:

• sec, forum, meaning, travel, clickbank, subsidiary,
marketing, commission junction, window, summit, elite,
engineers, computer services, future, managers group

Suggested related terms by “Yahoo! Suggest”:
• marketing, programs, become a poker affiliate, internet

poker, affiliatesellers, affiliates
• Test 3: Topic “Christmas Tree (Oil Wellhead)“

Query: “christmas tree”
Results of “Researcher”:

• Given: 3 PDF-documents found with Yahoo!
• Found query expansion terms:

oil platform, production, oil well, oil production, well,
well production, oil view, oil gas, subsea platform,
delivery

• Additionally found documents matching the topic: 42
Suggested related terms by “Google Suggest”:

• Shop, farm, shop locations, hill, shop ma, farm kent, shop
ct, farming, shop orange ct, artificial, pictures, sale, xmas

Suggested related terms by “Yahoo! Suggest”:
• e-cards, index of under the, spode, decorations, dishes,

under the, screen saver
With these and further tests we could prove that the “Researcher” produces

usable expansion terms when documents with homogeneous topics are provided
for query expansion. This is also the case when only a few local documents
matching a specific query can be found. At the same time we could show that
the quality of the offered related terms by Google and Yahoo! are not always
satisfying. Even so, Google’s suggestions are generally more suitable than those
by Yahoo!, although also Google did not always manage to provide expansion
terms for queries with different meanings. For instance, the query “christmas
tree” in the meaning of an oil wellhead was never reflected in the list of related
terms. Therefore, in direct comparison with both well-known services the
“Researcher” provided the most suitable expanded queries and search results.

87

6. Conclusion

In this paper we introduced the Firefox browser extension “FXResearcher”,
whose aim it is to support the user in searching for documents on the local
computer and on web presences. Its new approach of client-sided query
expansion based on local text documents in order to find more proper
documents in the web has been elaborated on in detail. We also pointed out that
these documents should match a query’s topic, because documents with
homogeneous topics contribute to the calculation of proper expansion terms for
a query. To find these matching documents “FXResearcher” integrates a full
text indexer that incrementally indexes specified folders on the local computer.
Documents in this index can then be selected for query expansion as a relevance
feedback when they contain terms of a search query. This approach is
promising, because a query will likely not be expanded with improper terms as
it still occurs when query expansion will be first performed by the requested
web search engine. The latter solution might completely fail when for instance
an expert searches for documents with a quite specific term that does not occur
in many documents. The usage of suggested improper expansion terms could
return only a few and inadequate results. The consideration of the local
knowledge for query expansion on the other hand can provide the expert with
proper expansion terms on his area of expertise and therefore return more
expected search results. With this approach even queries consisting of
homonyms can be properly expanded. In a future version of “FXResearcher” a
peer-to-peer (P2P) module will be integrated. This module will allow users to
semantically search for documents on participating peers. The advantages of a
P2P-system like scalability and availability will also support this function.
Many researchers active in the field of P2P information retrieval recognized this
and started the development of search technologies like those described in [10],
[11], [14] and [15]. Our aim is to provide techniques to route queries to
semantically matching peers by analyzing their peer profiles that consist of
compact representations of their locally offered documents. The usage of peer
descriptions in form of profiles will even avoid blind search methods like those
applied in Gnutella [16]. This leads to a clustering of semantically similar peers,
forming a small world network structure [17]. Even in this scenario query
expansion can significantly enhance the quality of the result set. For instance,
incoming queries can be analyzed and expanded on a peer using the local
knowledge in the same manner as described above. The retrieved documents
will then be added to the result set and an expanded query can be forwarded to
peers with similar peer profiles. Additionally, peers that have contributed many
documents could also add terms from their profile to the query. This approach is
quite useful as no global knowledge of all participating peers has to be
computed and maintained. Another advantage of using query expansion is the

88

compensation of the missing completeness of peer profiles due to the fact that a
peer profile has to be compact in order to be attached to messages and stored in
other peers’ routing tables. With this additional module “FXResearcher” will be
turned into a multifunctional browser-based semantic search tool that addresses
the interactive search for documents on the local computer, the World Wide
Web and on remote computers through P2P information retrieval.

Acknowledgements

We would like to explicitly thank Dr. David Huynh of the Massachusetts
Institute of Technology (MIT) for his great work to support Java code in Firefox
extensions. His project “JavaFirefoxExtension” [18] made it possible for us to
easily integrate the functionality of the “Researcher” into a Firefox extension.
His helpfulness regarding the solution of special problems in the
implementation was very much appreciated.

References

[1] WEBSITE OF GOOGLE, www.google.com.

[2] WEBSITE OF YAHOO!, www.yahoo.com.

[3] ROCCHIO J., Relevance Feedback in Information Retrieval, The SMART
Retrieval System: Experiments in Automatic Document Processing,
chapter 14, pages 313-323, Prentice Hall, Inc., 1971.

[4] JÉRIBI L., RUMPLER B., Instance Cooperative Memory to Improve
Query Expansion in Information Retrieval Systems, J. UCS 8(6): 591-
601, 2002.

[5] SALTON G. et al., A vector space model for information retrieval,
Journal of the American Society for Information Science, 18(11):613-
620, 1975.

[6] DEERWESTER S. C. et al, Indexing by latent semantic analysis, Journal
of the American Society of Information Science, 41(6):391–407, 1990.

[7] COLLINS A., LOFTUS E., A spreading activation theory of semantic
processing, The Psychological Review, 82(6):407-428, 1975.

89

[8] PREECE, S., A spreading activation network model for information
retrieval, PhD thesis, CS Dept., Univ. of Illinois, Urbana, IL, 1981.

[9] Website of the natural language processing group (NLP), University of
Leipzig, http://www.asv.informatik.uni-leipzig.de/opencms/asv/de/index.html.

[10] TANG C. et al., pSearch: Information retrieval in structured overlays,
ACM SIGCOMM Computer Communication Review, pages 89–94,
2003.

[11] KRONFOL A.Z., FASD: A Fault-tolerant, Adaptive, Scalable,
Distributed Search Engine, Princeton University, 2002.

[12] DUNNING T., Accurate methods for the statistics of surprise and
coincidence, Computational Linguistics, 19(1):61–74, 1994.

[13] Website of the Yahoo! Search Web Services,
http://developer.yahoo.com/search/web/V1/webSearch.html.

[14] CUENCA-ACUNA F. M. et al., PlanetP: Using Gossiping to Build
Content Addressable Peer-to-Peer Information Sharing Communities,
12th International Symposium on High Performance Distributed
Computing (HPDC), 2003.

[15] KALOGERAKI V. et al., A Local Search Mechanism for Peer-to-Peer
Networks, In Proceedings of the Eleventh International Conference on
Information and Knowledge Management, pages 300–307, 2002.

[16] Website of Gnutella, www.gnutella.com.

[17] KLEINBERG J., The Small-World Phenomenon: An Algorithmic
Perspective, In Proceedings of the 32nd ACM Symposium on Theory of
Computing, 2000.

[18] Website Of the Project “JavaFirefoxExtension”,
http://simile.mit.edu/wiki/Java_Firefox_Extension.

