
139

Claudia Eckert, Frederic Stumpf
Fraunhofer Insitute for Secure Information Technology (SIT), Germany

{claudia.eckert|frederic.stumpf}@sit.fraunhofer.de

Omid Tafreschi
Technische Universität Darmstadt, Germany

tafreschi@is.tu-darmstadt.de

ON CONTROLLED SHARING OF

VIRTUAL GOODS

Abstract: Digital Rights Management Systems aim at protecting copyrighted virtual goods

against illegal distribution and usage. They enable content owners to formulate usage policies,

which are supposed to be enforced on consumers‘ devices. However, prevailing systems have two

shortcomings. They give little attention to consumers‘ expectations by being too restrictive and

they fail at protecting digital content, since they build up their protection techniques on unreliable

basis, e.g., obscurity methods. This paper presents an approach that overcomes these two

shortcomings. It supports the transfer of digital content between users and devices and, thus,

provides more flexibility. This transfer is based on mutual consent between a consumer and a

content provider at the time of purchase and happens in a preconcerted and reliable way. In

addition, the transfer between users does not require any interaction with the content provider at

the time of transfer.

Keywords: Trusted Computing, Digital Rights Management, Policy Enforcement

1. Introduction

Efficient compression algorithms and high bandwidths allow users to share

digital content, such as music, films, and books, over communication networks

at low cost. This led to the emergence of file sharing networks which are often

used for illegal distribution of digital content. The content owner and the

content provider respond to that illegal distribution with the concept of Digital

Rights Management (DRM). Basically, DRM aims at controlling the usage of

digital content. For this purpose, so-called DRM systems were developed. They

enable content providers to define usage rules with the help of Rights

Expression Languages (RELs). RELs consist of a grammar (a schema), also

called the language concept [10], that describes the basic grammar for the

expression of rights terms and conditions, and their relation to the assets in

question and the parties involved. The resulting right definition is referred to as

a license object. Since this object defines the usage of certain content for a

140

certain customer, the rights object itself and the applications processing it, i.e.,

DRM reference monitor, and the rendering application, should be protected

against manipulation. Otherwise, the content could be used in a way other than

defined by the content provider.

Existing DRM systems have two shortcomings. First, they build their

protection measures on the basis of unreliable software-based solutions, such as

obscurity techniques. Publicly available documentation for common rights

management systems from Microsoft [13] or Apple [2] does not disclose how

they resist replay attacks for their (proprietary) dynamic license

implementations. Obscurity techniques are as long effective as long as the

obscurity is undiscovered. Moreover, most of the current DRM solutions are

closed software and cannot be verified for inherent security flaws. In addition,

this approach may lead to unwanted side-effects. A prominent example for

these unwanted side-effects is the Sony BMG CD copy prevention scandal [11].

Sony BMG included a software for copy prevention on music CDs. This

software was automatically installed on Windows computers when customers

tried to play their CDs. This installation has proven to be particularly

problematic since the installed software interferes with the normal way in which

the Windows operating system plays CDs. To make matters worse, it created

security holes that were exploitable by malicious software such as worms or

viruses [14].

Second, existing DRM systems have been developed from the content

providers‘ point of view. Consequently, they do not consider consumers‘

expectations. As stated in [7], the neglect of consumers‘ expectations may

hamper the overall acceptance of DRM. According to [6], 75% of the

consumers want to share music with others and would pay more for this kind of

usage.

Against this background, we realize that a successful DRM system has to

respect consumers‘ expectations while providing reliable security mechanisms

to protect digital content against unauthorized usage.

Trusted computing technologies provide the necessary technical foundation

for building reliable systems which behave in an expected way. They basically

provide a set of techniques to enforce security policies. Although trusted

computing has a bad reputation, we believe that this technology has the

necessary potential for a wide range of sensitive applications.

In this paper, we present an approach that overcomes the two shortcomings

mentioned above. It supports the transfer of digital content between users and,

thus, provides more flexibility. This transfer is based on mutual consent

between a consumer and a content provider at the time of purchase and happens

in a preconcerted and reliable way. In addition, the transfer between users does

not require any interaction with the content owner at the time of transfer.

141

This paper is organized as follows: First, we give an introduction to trusted

computing technologies and explain the concept of remote attestation in Section

2. We present a masquerading attack against this concept in Section 2.2. In

Section 3, we propose a new protocol which is robust against masquerading

attacks. This protocol can be used for developing a robust DRM system that

supports transfer of licenses to other users or devices. We then present such a

DRM system in Section 4. We discuss related work in Section 5 and conclude

in Section 6.

2. Background on Trusted Computing Mechanisms

The introduction of the Trusted Platform Module (TPM) which is specified

by the Trusted Computing Group (TCG) provides vital functions for IT-

security. Besides the potential of offering a protected storage for storing

cryptographic keys, the TPM also offers the possibility to attest to the

configuration of the local platform to a remote platform which is called remote

attestation (RA). This process is of particular interest in the context of DRM

[12] or Enterprise Security [16] to ensure that a client platform is trustworthy

and is behaving in accordance with a defined policy. This becomes relevant

when sensitive data is transferred which should only be used in an authorized

way, i.e., the content can be used by an authorized user on a specified platform.

To detect attacks that manipulate the enforcement mechanisms by modifying

the local client software, one may validate whether the client platform is

untampered using RA. Thus, the sender has a confirmation about the

trustworthiness of the platform in question. However, RA protocols are not per

se resident against masquerading attacks. We explain this issue in Section 2.2

The core of the TCG mechanisms [22] is the TPM, which is basically a

smartcard soldered on the mainboard of a computer. The TPM serves as the root

of trust, because its hardware implementation makes it difficult to tamper with,

and therefore it is assumed to be trustworthy. One must also assume that the

hardware vendor is trustworthy and has designed the TPM chip according to the

specification. Although the TPM chip is not specified to be tamper-resistant, it

is tamper-evident, meaning that unauthorized manipulations can be detected.

The TPM provides a mechanism to store software integrity values in a

protected storage, more precisely, inside so called Platform Configuration

Registers (PCRs), which are initialized on power up. Software components are

measured by a measurement engine and the corresponding hash-values are

securely stored inside the PCRs. For every measured component an event is

created and stored in the stored measurement log (SML). The PCR values can

then be used together with the SML to validate the state of a platform. To make

sure that these values are authentic, they are signed with a non-migratable TPM

142

signing key, the Attestation Identity Key (AIK). The remote platform can

compare these values with reference values to see whether the platform is in a

trustworthy state or not.

2.1 Remote Attestation

RA is used to attest to the configuration of an entity to a remote entity. This

procedure can be used to get integrity information before a client proceeds with

the communication in order to use a service or receive data, e.g., digital content.

The underlying mechanism of a RA protocol is referred to as integrity reporting.

Sailer et al. [17] state that the goal of integrity reporting protocols is ―to enable

a remote system, i.e., the challenger, to prove that a program on another system,

i.e., the attesting system owned by the attestor, is of sufficient integrity to use‖.

The integrity reporting protocol proposed by Sailer et al. is based on a simple

challenge-response authentication scheme. We will briefly explain this protocol

by looking at the transmitted messages shown in Figure 1. In this figure,

Platform A requests integrity information by delivering a nonce to B. B proves

freshness of the integrity of its system configuration by signing the current PCR

values and the delivered nonce with an AIK. Further details on this protocol can

be found in [17] and [21].

Figure 1. Integrity Reporting Protocol [17]

We have shown in [21] that this integrity reporting protocol is vulnerable to

a masquerading attack. We will shortly outline this attack in the next section.

2.2 Masquerading Attack Scheme

The attacker considered here has two platforms under his control. One

platform runs a trustworthy operating system with the client software that

enforces a certain policy, e.g., the DRM reference monitor. This platform (C)

represents the client that is conform to the original client software and therefore

untampered. This platform is also equipped with a genuine TPM that supports

the policy enforcement of the DRM system. The attacker is also in control of

one malicious client platform (M) that wants to gain control of protected digital

content. We refer to this client as malicious client, since his enforcement

mechanism has been tampered with and it is not conform to the original client

software. We require for our attack that C answers the request from M, i.e., C is

not configured to answer only requests from A.

143

In our attack scheme, the attacker bypasses the remote attestation of M, by

using the platform configuration of the honest client C to attest his malicious

client running on M. It should be noted that this attack is successful even if this

integrity reporting protocol is integrated inside another established

cryptographic channel, such as TLS. Details on this issue can be found in [21].

Figure 2 depicts the attack against the integrity reporting protocol. The

challenging party A wants to securely validate the integrity of the attesting

malicious system M using the protocol proposed by Sailer et al. The malicious

system M itself transfers all messages from A to the honest client C.

Figure 2. Masquerading Attack on the Integrity Reporting Protocol [21]

The shortcoming of the integrity reporting protocol is caused by the

restricted usage possibilities of AIKs. According to [22], the AIKs can

exclusively be used for proving the authenticity of a platform. This means AIKs

can neither be directly used to establish secure channels nor to authenticate

communication partners. Therefore, the challenger cannot be sure whether the

received message belongs to the attesting system. He only knows that he

received a message from a genuine TPM. Additionally, the possession of

multiple AIKs is possible, the only requirement is, that the corresponding

certificate must be certified by a trusted Privacy-CA thus belonging to a valid

endorsement key. As a consequence, the challenging party cannot verify the

integrity of a platform only with the help of the AIKs belonging to that platform.

Even if the server has the certificate which belongs to the AIK and forbids

the creation of new AIKs, masquerading attacks cannot be prevented, since the

attesting system M pretends that it is in possession of the corresponding K
-1

AIK

by using the integrity values with a valid AIK signature from platform C. The

challenging system is therefore not able to detect this attack, since the attesting

system delivers all information that identifies it as platform C. After the

platform is authorized, the malicious platform is assumed to be trusted.

We explain the relevance of the masquerading attack by a concrete usage

scenario, i.e., the initialization phase of a DRM system. At this time, the DRM

system has not yet exchanged a cryptographic key with the server. This key is

needed to bind the digital content to the client platform by means of encryption.

Before exchanging the key, the server validates the state of the client platform

in order to ensure that the client is running a trustworthy DRM system. If the

144

attestation is successful, the DRM system supports the user by the creation of an

account and an appropriate cryptographic key on the client machine. This key is

later used to establish a mutual authenticated channel (e.g., a TLS-channel)

which also authenticates the user. After the initialization, the server encrypts the

digital content using the client key and transfers it to the client. If now an

attacker performs a masquerading attack as outlined in Figure 2, this key gets

bounded to the platform configuration on which the enforcement of usage rules

are bypassed, i.e., the malicious system. Thus, it cannot be ensured that only

trustworthy clients can access protected digital content.

3. A Robust Integrity Reporting Protocol

In this section, we present a protocol to overcome the previously described

shortcoming of integrity reporting protocols. A detailed description and

evaluation of this protocol is given in [20]. The presented protocol is able to

prevent masquerading attacks since a potential attacker, who is placed between

the server and the collaborative host, is excluded from the following

communication flow.

To protect the integrity reporting protocol against masquerading attacks, we

enhance it with a key agreement protocol. The modified integrity reporting

protocol is shown in Protocol 3.1 with the extension to use Diffie-Hellman

parameters. It is essential for the protocol that both parties agree on one

common generator g and one common group m. The asymmetric keys are then

generated and computed as described in [5].

The major enhancement is that the prover generates g
b
 mod p and includes

the resulting Diffie-Helman public key into its signed attestation response. The

public key is also transmitted to the challenger in plaintext using Cert(AIK,KAIK)

to enable the challenger to validate the AIK signed message. Because B is

running a trusted OS with a trusted platform configuration, the secret part of the

DH-key is not accessible to a potential malicious client. Finally, both parties

compute the shared session key Ksession which is also used to deliver the privacy-

critical SML.

We have implemented the protocol and run performance measurements on

the computational overhead introduced through the additional cryptographic

operations [20]. The additional cryptographic operations increase the time for

answering one attestation request by 0.70% on an Atmel 1.2 TPM compared to

the protocol proposed by Sailer et al. The complete time for execution of the

protocol and for establishing the session key Ksession is smaller than 1 second.

Thus, the protocol is very efficient.

145

146

This robust integrity reporting protocol can be used as a building block for

robust DRM systems. We present such a system in the following section.

4. A Fair Digital Rights Management System

In this section, we present a fair DRM system. As argued in Section 1,

existing DRM systems neglect consumers‘ expectations. In particular, they bind

legally purchased content to consumers‘ hardware and do not allow consumers

to transfer their content to their other devices or to other users. However, 75%

of consumers want to share music with others and would pay more for this kind

of usage [6]. This willingness to pay would enable content providers to set up a

new range of business models. In the following, we sketch a DRM system

which enables consumers to transfer their legally purchased content.

Figure 3. Use Case Diagram of Fair DRM System

Figure 3 shows the use cases supported by our DRM system. The system

enables a content provider to offer his digital content. As discussed in Section 1,

selling digital content usually implicates selling the associated license.

Accordingly, purchasing digital content implicates purchasing the

corresponding license. The DRM system checks the availability of an

appropriate license each time the customer wants to use, e.g., to render, digital

content. A special kind of usage supported by our DRM system is transferring

digital content from one user to another. In this case the according license or a

part of it is transferred, as well. Figure 4 depicts the architecture of our DRM

system.

147

Figure 4. Architecture of the Fair DRM System

Figure 4 shows two kinds of applications, i.e., a rendering application on the

client side and a license server. Each time a rendering application wants access

to protected digital content, the DRM reference monitor is contacted which

decides whether the access is granted or denied. Thus, the DRM reference

monitor has similar characteristics as a policy decision point. The DRM

reference monitor itself runs on top of a trusted platform. This platform offers

two functionalities, i.e., a secure storage and a secure network interface. The

secure storage is necessary for storing licenses for digital content and policies,

which determine the behavior of the DRM reference monitor, e.g., evaluating

the trustworthiness of other platforms. The secure storage protects licenses and

policies by sealing all data stored inside the secure storage, i.e., binding data to

the state of the complete platform including the DRM reference monitor. Thus,

sealed data can only be read if the DRM reference monitor is untampered and in

a trusted state. We assume that access to the secure storage is only possible by

the DRM reference monitor. This means that it is not possible to access the

secure storage with different means rather than the interface provided to the

DRM reference monitor. The secure network interface is responsible for

148

building trusted communication channels. This is done using the robust integrity

report protocol presented in Section 3.

Basically, the DRM system offers three functionalities: (I) purchasing

content, (II) using content and (III) transferring content. We present the

necessary protocols in the following sections.

4.1 Purchasing Content

The protocol for the purchasing process is depicted in Figure 5. At the

beginning, the content provider has to verify the trustworthiness of a client's

platform, i.e., its DRM reference monitor. The integrity reporting protocol

which we presented in Section 3 is used for this purpose. The result of this step

is the shared session key Ksession. This key is used in the next step to encrypt the

customer's order including information about the digital content he wants to

purchase and his intended usage. The encrypted order is transmitted to the

content provider. The content provider decrypts the order with the help of

Ksession, generates a symmetric key, i.e., Kcontent and encrypts the desired content

with that key. Afterwards, he generates a license including the usage rules and

Kcontent. The license itself is encrypted using Ksession. The encrypted license and

the encrypted content are sent to the customer.

After decrypting the license, it is bound to the client's platform

configuration by sealing it. The client saves the encrypted content without

decrypting it.

Figure 5. Protocol for Purchasing Digital Content

4.2 Using Content

Figure 6 depicts the process of using content. A rendering application and a

DRM reference monitor are involved in this process. Both applications are

149

located at the user's platform (Compare Figure 4). At the beginning, the

rendering application has to prove its trustworthiness using platform attestation.

Based on the received integrity information, the DRM reference monitor

decides whether the rendering application is trustworthy or not. For this, we use

the protocol proposed in Section 3. The resulting key Ksession is used to ensure

confidentiality during the next steps. The rendering application prepares a

UsageRequest. This message is encrypted with Ksession and contains information

about the content and the intended usage. After receiving the UsageRequest, the

DRM reference monitor decrypts it with Ksession and checks the availability of

the corresponding license. If the license is available, the DRM reference

monitor checks whether the customer possesses the necessary usage rights

which are given in the UsageRequest. In the case of a positive result, the DRM

reference monitor decrypts the encrypted content with Kcontent which is stored in

the license. Afterwards, the license is encrypted again with the Ksession. This

approach ensures that only the trusted rendering application can access the

content. Before sending the encrypted content, the DRM reference monitor

updates the license. This is an optional action and is only necessary when the

license limits the number of usage. After receiving the encrypted content, the

rendering application decrypts it with Ksession and renders it to the user.

Figure 6. Protocol for Using Digital Content

A critical attack on the secure storage of our DRM system is a replay attack,

where a user replays the actual secure storage with an old secure storage. This

attack is especially relevant if a user only possesses a limited number of usage

rights on a particular protected content. To achieve protection against attacks of

this type, the monotonic counter of the TPM could be used as already explained

in [15] or [19].

150

4.3 Transferring Content

Figure 7 shows the process of transferring digital content from one customer

to another customer. This kind of usage is a key feature of our DRM system and

does not only support the exchange of digital content between customers. In

addition, it allows the transfer of digital content between devices of one

customer.

Figure 7. Protocol for Transferring Digital Content

We assume two customers in our scenario, namely Alice and Bob. Alice

wants to transfer a certain digital content or part of it to Bob. At the beginning,

Alice's DRM reference monitor checks whether she has the right to transfer the

content in question. This permission is stored in the corresponding license,

which can be accessed only if Alice's DRM reference monitor is trusted. If

Alice has the right to transfer the content, her DRM reference monitor requires

an attestation from Bob's DRM reference monitor to verify its trustworthiness.

For this purpose, we apply the protocol presented in Section 3. The key Ksession

is the result of this step and is used for the next steps to ensure that only Bob's

DRM reference monitor can access the upcoming messages. After the

attestation, Alice's DRM reference monitor decrypts the content using the

symmetric key KcontentAlice. This key is stored in the corresponding license, which

is only accessible if Alice's DRM reference monitor is untampered. After this

decryption, Alice's DRM reference monitor generates the symmetric key

KcontentBob and encrypts the content using that key. Afterwards, Alice's DRM

reference monitor generates a license for Bob and updates its own license. Bob's

license includes the KcontentBob and usage rights and is encrypted with Ksession and

is sent together with the encrypted content to Bob's DRM. After receiving the

message, Bob's DRM reference monitor decrypts the license and binds it to

151

Bob's platform configuration by sealing it to the actual platform configuration.

Afterwards, Bob's DRM reference monitor stores the encrypted content.

The process of transferring digital content between different users or

devices of one user is similar to the process of purchasing content except for

two additional steps. These are checking the sender's license with respect to

transfer rights and updating the sender's license before generating and

transferring the receiver's license. In contrast to purchasing content, transferring

content does not require any interactions with the content provider. However,

the proposed protocol ensures that the transferred content can only be used

according to usage rules, which were defined by the content provider at the time

of purchase.

To prevent that a customer transfers digital content to another customer and

then replays an old secure storage, we again propose to use the monotonic

counter of the TPM. Using this concept, it can be ensured that a misbehaving

customer cannot replay an old secure storage after he transferred digital content

to another customer.

5. Related Work

Grimm et al. [9] give a comprehensive evaluation of current DRM systems

and conclude that successful DRM systems have to fulfill two requirements.

They should respect privacy concerns of consumers and should not neglect the

interests of consumers. There are several proposals for fulfilling one or both of

these requirements [1, 3, 8, 15].

Arnab and Hutchison introduce in [3] the concept of usage contracts. Usage

contracts are defined with the help of RELs and can be the result of a

negotiation between end users and rights holders. Usage contracts give end

users more flexibility with respect to the usage of virtual goods. Concerning this

feature, the concept of usage contract is similar to our work. However, in

contrast to our work, Arnab and Hutchison do not present any enforcement

mechanisms.

Sadeghi et al. [15] present a sophisticated security architecture that supports

the enforcement of stateful licenses. This kind of license can be used to define

rights for usages during a fixed time period or for fixed number of usages. In

addition, Sadeghi et al propose a protocol based on trusted computing

functionality for transferring licenses via trusted channels. Such a trusted

channel establishes a session key between a content provider and the customer

and is comparable to the channel established by our robust integrity reporting

protocol. However, only the negotiation of the session key between content

provider and the customer using a trusted channel takes between 2 and 3

seconds on an Atmel 1.1b TPM and between 23 and 24 seconds on an NSC 1.1b

152

TPM. In contrast to that, a complete protocol run in our approach is achieved in

under one second.

Adelsbach et al. [1] propose a DRM system which enables users to create

(and distribute) copies of their own content as long as the number of copies

does not exceed a previously defined threshold. In this case, the identity of the

user remains hidden. In cases of unauthorized usage, i.e., making too many

copies, the identity of the end user can be revealed with the help of a secret

sharing scheme. The basic idea of this work differs from our proposal. We

define the right for making copies using the license object and prevent

unauthorized usage by enforcing the usage policies.

Grimm and Aichroth [8] present the concept of Lightweight Digital Rights

Management (LWDRM). This concept introduces two formats, i.e., the Local

Media File (LMF) and the Signed Media File. LMF binds digital content to a

hardware platform. Consequently, the content can be rendered only on a special

platform. SMF can be used to eliminate this binding. To this end, the user signs

the content and a digital watermark containing the user‘s identity and adds this

data to the content. Content in SMF format can be transferred to other users and

devices. The idea behind LWDRM is that a user will not illegally distribute his

purchased content out of his reach, since it contains information about him. This

assumption is the main difference between LWDRM and our approach.

However, in contrast to [8], we do not rely on the correct behaving users. In

addition, we do not add any information about users to the content.

6. Conclusion

In this paper, we addressed the issue of controlling access to digital content.

First, we argued that current DRM systems rely on protection measures on the

basis of unreliable software-based solutions. In addition, they do not sufficiently

consider customers‘ expectations. To overcome these shortcomings, we

proposed to use trusted computing technologies because of two reasons. First,

they allow us to build hardware-based (and thus more robust) DRM systems.

Second, trusted computing is an emerging technology and will thus be very

widely available on different platforms. This trend will spur the interoperability

of systems based on trusted computing technologies and allow consumers to

transfer and use their purchased content to other devices and/or users.

We proposed a DRM system, which considers both, the requirements of

content providers and the requirements of consumers. It provides a high

protection level. At the same time, it allows users to transfer their purchased

content to other devices or users. We have implemented the proposed DRM

system. A detailed description of the prototype is given in [18].

153

References

[1] A. Adelsbach, U. Greveler, and J. Schwenk. Fair DRM -Ermoeglichen von

Privatkopien und Schutz der digitalen Ware. In Tagungsband des 9. Deutschen IT-

Sicherheitskongresses des BSI, 2005.

[2] Apple. FairPlay DRM. http://www.apple.com/itunes/, 2008.

[3] A. Arnab and A. Hutchison. Fairer Usage Contracts for DRM. In DRM ‘05:

Proceedings of the 5th ACM workshop on Digital rights management, pages 1–7,

New York, NY, USA, 2005. ACM Press.

[4] E. Becker, W. Buhse, D. Günnewig, and N. Rump, editors. Digital Rights

Management -Technological, Economic, Legal and Political Aspects, volume 2770

of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[5] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22(6):644–654, 1976.

[6] N. Dufft, A. Stiehler, D. Vogeley, and T. Wichmann. Digital Music Usage and

DRM -Results from an European Consumer Survey, May 2005.

[7] M. Fetscherin. Evaluating Consumer Acceptance for Protected Digital Content. In

Becker et al. [4], pages 321–333.

[8] R. Grimm and P. Aichroth. Privacy Protection for Signed Media Files: A

Separation-of-Duty Approach to the Lightweight DRM (LWDRM) System. In

Proceedings of the 2004 Workshop on Multimedia and security, pages 93–99.

ACM, 2004.

[9] R. Grimm, S. Puchta, M. Mueller, J. Bizer, J. Moeller, A. Will, A. Mueller, and S.

Jazdzejewski. privacy4DRM Datenschutzverträgliches und nutzungsfreundliches

Digital Rights Management. Technical report, Studie im Auftrag des

Bundesministeriums für Bildung und Forschung, 2005.

[10] S. Guth. Rights Expression Languages. In Becker et al. [4], pages 101–112.

[11] M. Hansen. DRM-Desaster: Das Sony BMG-Rootkit. Datenschutz und

Datensicherheit (DuD), 30(2):95–97, 2006.

[12] Q. Liu, R. Safavi-Naini, and N. P. Sheppard. Digital Rights Management for

Content Distribution. In ACSW Frontiers ‘03: Proceedings of the Australasian

information security workshop conference on ACSW frontiers 2003, pages 49–58,

2003.

[13] Microsoft.Windows Media Rights Manager10.

http://www.microsoft.com/windows/windowsmedia/ drm/default.aspx, 2008.

154

[14] M. Russinovich. Sony, Rootkits and Digital Rights Management Gone Too Far,

2005.

[15] A.-R. Sadeghi, M. Scheibel, C. Stüble, and M. Wolf. Play it once again, Sam -

Enforcing Stateful Licenses on Open Platforms. In Proceedings of the Second

Workshop on Advances in Trusted Computing (WATC ‘06), 2006.

[16] R. Sailer, L. van Doorn, and J. Ward. The Role of TPM in Enterprise Security.

Datenschutz und Datensicherheit (DuD), 28(9):539–544, September 2004.

[17] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and Implementation of a

TCGbased Integrity Measurement Architecture. In SSYM‘04: Proceedings of the

13th conference on USENIX Security Symposium, pages 16–16. USENIX

Association, 2004.

[18] B. Stärz. Technische Infrastrukturen zur Umsetzung neuer Erlösmodelle für

digitale Güter. Diplomarbeit, TU Darmstadt, 2006.

[19] F. Stumpf and C. Eckert. Enhancing Trusted Platform Modules with Hardware-

Based Virtualization Techniques. In Proceedings of the Second International

Conference on Emerging Security Information, Systems and Technologies

(SECURWARE 2008), Cap Esterel, France, August 25-31 2008. IEEE Computer

Society. to appear.

[20] F. Stumpf, A. Fuchs, S. Katzenbeisser, and C. Eckert. Improving the Scalability of

Platform Attestation. In Proceedings of the Third ACM Workshop on Scalable

Trusted Computing (ACM STC‘08), pages 1–10, Fairfax, USA, October 31 2008.

ACM Press.

[21] F. Stumpf, O. Tafreschi, P. Röder, and C. Eckert. A Robust Integrity Reporting

Protocol for Remote Attestation. In Second Workshop on Advances in Trusted

Computing (WATC‘06 Fall), November 2006.

[22] Trusted Computing Group. Trusted Platform Module (TPM) specifications.

Technical report, https://www.trustedcomputinggroup.org/specs/TPM, 2008.

https://www.trustedcomputinggroup.org/specs/TPM

