
61 

Huajian Liu, Martin Steinebach, Marcel Schneider 
Fraunhofer SIT, Darmstadt, Germany 

{liu,steinebach}@sit.fraunhofer.de 

EFFICIENT WATERMARK EMBEDDING 

FOR WEB IMAGES 

Abstract: Digital watermarking is a promising solution for image piracy tracing, because it can 

generate unique individual image copies by embedding transaction watermarks. For web 

applications, however, it is difficult to integrate watermarking technique for real time embedding 

because the computational demand of the embedding process is usually too high for web servers. 

In this paper, we present a solution to this problem by using the watermarking container concept. 

The implementation problems and corresponding solutions for applying the container approach to 

web images are addressed. Experimental results demonstrate the efficiency of the proposed 

solution. 

Keywords: digital watermarking, watermarking container, web images  

1. Introduction 

Nowadays digital content protection has become a pressing demand for 

various media published on the Internet, such as digital image, audio and video. 

For example, it is now very easy for a common user to download a copy of any 

image displayed on web pages. Therefore, after the images on web pages are 

transferred to the browser on client side, the protection of the image content is 

out of the owner‘s control. These images can be easily copied and re-used by 

any recipient [1]. As each individual copy of digital image is identical, it is very 

difficult, if not impossible, for the content provider to identify the source of the 

pirate copies. Therefore, a solution to identify different copies or recipients is 

becoming of great concern.  

Digital watermarking is more and more being accepted as a promising 

solution to this problem. It can make every delivered copy different from each 

other by embedding a unique ID into each copy, also known as digital 

fingerprinting or transaction watermark. The embedded ID represents a 

recipient‘s identity. When a recipient reuses his unauthorized copy and the 

redistributed copy is acquired by the content provider, the source of the 

redistribution can be identified by examining which ID is contained in the 

suspicious copy. The fingerprinting process is done without changing the file 

format, file size and the perceived quality of the content. Each copy is still 



62 

perceptually identical after watermarking. At the same time the embedding 

process is usually not reversible. It is hard or impossible to remove the 

embedded data without significantly degrading the quality of the cover.  

Many different digital watermarking and fingerprinting algorithms have 

been proposed in the literature [2]. Most of attention has been paid to the 

improvement of the characteristics of the embedded watermark, especially 

transparency, robustness and security [3]. In order to achieve better 

transparency, higher robustness and security, more complex watermarking 

algorithms have been designed. For instance, frequency domain algorithms 

embedding watermarks by modifying image spectral components have been 

shown to be more robust and transparent that pixel domain ones. However, 

when embedding a watermark in a domain other than the pixel domain, 

transformation to and from the desired domain is necessary. In addition, 

complex perceptual model is usually involved for good transparency. All these 

improvements will inevitably increase the algorithm complexity and the 

computation cost. 

Many web applications, however, require a low computational demand of 

watermarking. A good example is the common web page service on a Web 

Server. In order to deliver unique image copies on the web pages to every 

visitor, multiple copies of the original image file are generated upon request and 

each copy is individually watermarked. A recipient‘s ID (e.g. a visitor‘s IP 

address or a customer‘s ID) has to be embedded into the images as soon as a 

request is received. Any latency is not desired. For a busy server, there might be 

hundreds of concurrent requests. In this case, the computation cost of most 

common watermarking algorithms will be too high for a web server to keep 

timely response to every visitor.  

In this paper, we introduce an efficient embedding strategy, watermarking 

container [4], for embedding individual watermarks into web images. In Section 

2 and 3, the web application scenario and the watermark container concept will 

be introduced. Implementation problems and solutions will be addressed in 

Section 4. The experimental results will be presented in Section 5. In Section 6, 

we discuss a few traceability and security issues and the paper is concluded in 

Section 7. 

2. Web Application Scenario 

In the Web Server scenario as shown in Figure 1, a user visits the web pages 

on a server via a web browser. First, the browser client sends an http-request for 

a web image to the web server. The server then generates a unique ID for the 

user. The ID is stored in a database together with the collected information 

about the client, such as customer information if available, IP address, time 



63 

stamp, and so forth. After that, an image copy with the user ID embedded will 

be produced and delivered to the browser client.  

After receiving the watermarked image, the user can view and re-save the 

image on his computer. If the image is later found published anywhere, the user 

ID can be extracted from the suspicious image. With the user ID, the user 

information can be retrieved from the database to identify the source of piracy. 

 

Figure 1. Transaction watermarking scenario for web images 

3. Watermark Container Concept 

The watermark container concept was first proposed in [4], where it was 

applied to audio data. The similar concept can also be applied to image data. 

Figure 2 illustrates the basic principle of watermarking container concept. The 

watermark container technique splits the watermark embedding into two stages: 

the watermark preprocessing and the watermark rendering.  

In the first stage, the original cover data is divided into units (e.g. image 

blocks). In every unit of the original cover image, the watermarked results of 

embedding a bit ‗1‘ or a ‗0‘ are respectively calculated with the specified 

embedding parameters, such as embedding strength, secret key and so on. The 

two watermarked units are denoted as A(0) and A(1). Then we calculate the 

different signals from the original data as  

)1()1(),0()0( AADAAADA     (1) 

where A is the original image unit. Then the original unit A and the different 

results DA(0) and DA(1) are stored in a so-called watermarking container file. 

To save storage space, DA(0) and DA(1) can be first compressed before storing. 

Therefore, the container file contains the original image blocks and the two 

difference signals.  



64 

In the second stage, different copies marked with an arbitrary watermark 

sequence can be rendered efficiently from the container file. For example, when 

a bit ‗0‘ should be embedded, the corresponding difference signal will be added 

on the original image block to generate the watermarked block. In this stage, no 

watermarking parameter is needed.  

In web applications, the watermark preprocessing stage can be prepared in 

advance. Thereafter, the speed of this stage is not that crucial. The web server 

will only need to store the watermarking container file and perform the 

rendering stage. Since the most computation is finished by the preprocessing 

stage and only simple mathematic operation is needed for watermark rendering, 

the computation demand on the web server is significantly alleviated.  

 

Figure 2. Illustration of the basic principle of watermarking container 

4. Implementation Problems and Solutions 

In this section, some implementation problems and their corresponding 

solutions are addressed. In order to apply the watermarking container concept, 

some assumptions must be met by the selected watermarking algorithm and 

image format.  

In the watermarking container, watermarked copies are rendered by 

composing prepared image blocks according to the binary bit sequence of a 

given watermark ID. The prepared blocks must be embedded with ‗0‘ or ‗1‘ 

separately. Therefore, two prerequisites must be met in order to compose any 



65 

arbitrary watermarked copy by creating a sequence of the pre-watermarked 

image blocks: 

1. Individual watermark bits must be embedded in separate image blocks, 

and the embedded bit in each block must be independent of each other. 

2. The image blocks used to generate the watermark container file must be 

of the same size and be independent of each other.  

4.1. Image Watermarking Algorithm 

All of the image watermarking algorithms that can fulfill the first 

requirement mentioned above can be used in the watermarking container 

framework. Generally, most of block-based algorithms could be suitable as long 

as they are able to embed independent watermark bits into separate image 

blocks. A typical approach is to embed one bit in every block, so only two 

watermarked versions (‗0‘ and ‗1‘) of each block need to be prepared and stored 

in the preprocessing stage. If more than one bit is embedded in a block, it is still 

feasible to apply the watermarking container concept, but more watermarked 

versions have to be preprocessed and stored in the container file, e.g. ‗00‘, ‗01‘ 

‗10‘ and ‗11‘ for two bits embedded into each block. This may significantly 

increase the effect of the preprocessing stage and the storage requirement. 

In our implementation, we use a block-based watermarking algorithm that 

embeds watermarks in wavelet domain.  One watermark bit is embedded in 

every 32×32 image block by modulating a random sequence on the 

corresponding wavelet coefficients as 










.0],[),(),(

,1],[),(),(
),(ˆ

wifjsyxTyxc

wifjsyxTyxc
yxc




  (2) 

where c  is the original wavelet coefficients and ĉ  is the watermarked ones. T 

is the local adaptive watermarking strength factor that is calculated from a 

perceptual model [5]. w  is the desired watermark bit,   is a global controlling 

factor and s  is a random m-sequence generated by a secret key. The watermark 

detection is done by calculating the cross correlation between ĉ  and s . 

Thus, one single watermark bit is embedded in every 32×32 image block, 

which is independent of other watermark bits. It therefore meets the first 

requirement listed above. 

4.2. JPEG Format Handling 

As mentioned above, the image blocks used to compose watermarked 

copies must be independent of each other. Therefore, a suitable image format 

should have such a structure that it is possible to exchange image blocks in the 

decoding process as early as possible. The worst case is that it is not possible to 



66 

do so until the image is represented in raw bitmap format. In addition, for Web 

application, in order to save bandwidth and transfer time, small file size is 

always desirable. Therefore, uncompressed image formats like BMP are not 

suitable in this application. 

 

Figure 3. Luminance distortions in watermark rendering progress 

Based on these considerations, JPEG format is a good candidate. First, 

image data in JPEG file is compressed in an 8×8 block based way. And JPEG 

files are usually of small size. Furthermore, JPEG images are the most widely 

used image format in Web applications. For these reasons, we use JPEG format 

in our implementation to realize the container concept. 

JPEG standard encodes DC and AC image data in DCT (Discrete Cosine 

Transform) domain separately [6]. The required condition that each block 

should be independent of each other is unfortunately only true in the encoding 

of AC data. The encoding of the DC value of each 8×8 block is based on the 

DC value in the previous block. Only the difference instead of the absolute DC 

value will be encoded.  

This block dependence problem may be negligible for watermarking 

algorithms that embed a watermark only by modifying AC coefficients in 8×8 



67 

block DCT blocks.  But some algorithms also change the DC value during 

embedding when it is performed in other domains or the used block size is 

different from 8×8. For example, in our wavelet-based watermarking algorithm, 

though the embedding is done in the middle frequency band in the wavelet 

domain, the DC values in DCT blocks are still slightly changed. If the DC 

values are not adjusted in the composition of image blocks during the 

watermark rendering stage, luminance and color distortions will accumulate 

progressively. As illustrated in Figure 3, the two watermarked versions have 

slightly different absolute DC values in five consecutive blocks in luminance 

channel. If the corresponding blocks (with bit ‗0‘ or ‗1‘ embedded) are simply 

copied to compose the final watermarked version without DC value adjustment, 

the DC values of the rendered watermarked copy, as shown in the third row, 

could be significantly shifted after decoding. The shift of the DC values may 

subsequently cause visible artifacts in the rendered watermarked image. 

Therefore, a solution to this block dependence problem is essentially necessary. 

 

Figure 4. Block crossover of watermark bit transition 

In our implementation, we store the necessary DC values in the container 

file for DC coefficient adjustment in the rendering stage. The absolute DC 

values of both JPEG blocks that are located on the border of a watermark bit 

transition need to be stored. For example, a sample image of 64×32 pixels is 

shown in Figure 4. Since the watermark block used in our wavelet-based 

watermarking algorithm is 32×32, two watermark bits will be embedded in this 

sample image, one ‗0‘ and one ‗1‘. The DC values of all the green blocks except 

the first one should be corrected during the rendering stage. Therefore, the 

absolute DC values in the blocks marked with a red or blue dot in Figure 4 

should be stored in the container file in the preprocessing stage. Using this 

additional information, the correct DC values in the green blocks can be quickly 

calculated.  



68 

For the corrections in JPEG bit stream, the old DC bits (both the length and 

the value) must be first removed, so the length of the DC bit streams of all the 

green blocks should also be stored. As only one DC value need to be encoded in 

a block, only a few bits are involved. The new calculated difference DC value 

(from the stored absolute values) can then be encoded and inserted into the bit 

stream. In order to do so, the relevant DC Huffman Table for the possible 

lengths of the involved DC values should be stored in the container file. After 

re-encoding the DC values in the relevant blocks, the absolute DC values after 

decoding will be kept correct, as illustrated in the fourth row in Figure 3. 

5. Experimental Results 

In this section, we present some selected test results, especially comparing 

the efficiency of the watermarking container and the original embedding 

algorithm. In order to keep the test results as accurate as possible, all the tests in 

the following sections have been run three times and then the average values are 

taken. The first two tests have been performed on a computer with Intel Core 2 

Duo T8100@2.1 GHz processor, 3 GB memory and 5,400 RPM hard disk. 

5.1. Test on Watermarking Duration and Image Quality 

In the first test, we compare the watermarking duration and image quality 

with/without watermarking container. A test image of size 1024×768 pixels is 

chosen for the test and stored in JPEG format with a quality factor 90 meeting 

the quality requirements of most web images. The original file size is 176,111 

bytes. A binary sequence of ‗01101101‘ is embedded into the image. The test 

results are shown in Table 1. 

From the values listed in Table 1, we can see that the container scheme 

significantly speeds up the watermarking process. The container method can 

render the watermarked image approximately 30 times faster than the original 

embedding process. It takes about 2 seconds to mark the test image without 

applying the watermarking container, which is evidently inacceptable for a busy 

web server. When the server gets many concurrent requests and must deliver a 

lot of different images per second, the watermarking latency of 2 seconds may 

lead to a few minutes waiting time for an image to be loaded on the client side. 

Two different embedding strengths have been used in the test. As expected, 

different embedding strengths won‘t affect the computation cost but will change 

the output file size because the introduced noise-like watermark patterns will 

decrease the JPEG compression rate. With the same embedding strength, the 

embedding processes with/without container achieve approximately the same 



69 

image quality. That means that applying watermarking container won‘t degrade 

the quality of final watermarked images. 

Table 1. Test results for comparison of watermarking time and image quality 

 File Size 

(Byte) 

PSNR 

(dB) 
Trial 1 Trial 2 Trial 3 Avg. 

Original (α=0.02)  147,321 49.34 1.85 s 1.82 s 1.86 s 1.84 s 

Container (α=0.02)  171,853 48.65 0.06 s 0.06 s 0.06 s 0.06 s 

Improvement  - - 3083% 3033% 3100% 3066% 

Original (α=0.05)  174,165 37.66 1.86 s 1,86 s 1,84 s 1.85 s 

Container (α=0.05)  198,627 37.60 0.06 s 0,06 s 0,06 s 0.06 s 

Improvement - - 3100% 3100% 3066% 3083% 

 

5.2. Test on Watermarking a Group of Images 

In this test, we compare the watermarking process with/without 

watermarking container on a group of images. This test simulates a practical 

scenario that different images will be watermarked on request. Eight JPEG 

images are used in this test, which are stored with JPEG quality factors from 90 

to 100. The image sizes vary from 1024×768 to 1632×1232. The total size of 

eight JPEG files is 4 MB. The used binary watermark sequence is 

‗0110110100110100‘. The test results are shown in Table 2. 

Table 2. Test results of watermarking a group of images 

 Trial 1 Trial 2 Trial 3 Average 

Original – 1 pass  24.17 s 24.47 s 24.31 s 24.32 s 

Container – 1 pass 0.52 s 0.50 s 0.48 s 0.50 s 

Improvement  4648 % 4894 % 5065 % 4864 % 

Original – 5 passes 121.97 s 121.48 s 120.68 s 121.38 s 

Container – 5 passes  1.86 s 1.89 s 2.03 s 1.93 s 

Improvement 6558 % 6428 % 5945 % 6289 % 

 

As listed in Table 2, the original embedding process takes about 24 seconds 

to watermark all the eight images, while the watermarking container can render 

the eight watermarked images in 0.5 second. The efficiency is therefore 

improved about 50 times. We also test to watermark all the eight images five 

times in a row. In this case, about 20% more improvement has been achieved by 



70 

applying the watermarking container. This is because all necessary components 

have already been cached after the first run. Similar situation would occur on a 

web server when different users are attempting to download the same images. 

5.3. Test on Watermarking Bit-rate for Various Systems 

In this test, we demostrate how many bytes of watermarked images the 

watermarking container can render per second, from which we can estimate 

whether the algorithm can fulfill the speed requirement of a specific server. 

Three computers with different hardware configurations are used in this test as 

listed in Table 3. System 1 is a Desktop PC that has two hard disks (Raid 1). 

System 2 is quite an aged computer from the year of 2000 and System 3 is the 

laptop used in the previous two tests. Since the processor in System 3 has two 

cores, we have also run a test with two parallel watermarking processes. By 

testing on these quite different system, we will demonstrate the scalability of the 

watermarking container.  

To calculate the watermarking bit-rate, 50.76 MB image data are 

watermarked with/without the watermarking contariner on the three systems 

respectively. The test results are listed in Table 4, where we can see that on 

System 1 and 3 the watermarking bit-rate is over 15 MB per second. When 

using two theads in parallel, the bit-rate increases to 35.6 MB per second on 

System 3. Note that this performance is achieved on a common laptop. On a 

powerful server, the performance process will be further improved as the 

watermarking bit-rate is approximately proportional to the speed of the used 

processor. The speed improvement achieved by the watermarking container is 

illustrated in Figure 5, comparing the results with/without using the container.  

 

 

Table 3. List of test systems 

 System 1 System 2 System 3 

Processor 
AMD Sempron 

3000+, 2.0 GHZ 

Intel Pentium III  

533 MHZ 

Intel Core 2 Duo  

T8100, 2.1 GHZ 

Memory 1024 MB 512 MB 3072 MB 

Hard Disk 
2×3.5‘ @7.200 

RPM 

3.5‘ @7.200 

RPM 

2.5‘ @5.400 

RPM 

Operating System Windows XP Pro 
Windows XP 

Home 
Windows XP Pro 

 

 



71 

Table 4. Watermarking bit-rate of different systems 

Image Data Size: 50.76 MB Original Container Improvement 

System 1 – Duration (seconds) 264.48  3.07 8615 % 

System 1 – Bit-rate (MB/sec) 0.19 16.5 8615 % 

System 2 – Duration (seconds) 704.39 11.89 5924 % 

System 2 – Bit-rate (MB/sec) 0.07 4.3 5924 % 

System 3 – Duration (seconds) 198.25 2.67 7425 % 

System 3 – Bit-rate (MB/sec) 0.26 19.0 7425 % 

System 3 (2 threads) –  

Duration (seconds) 
208.90 2.85 7330 % 

System 3 (2 threads) –  

Bit-rate (MB/sec) 
0.49  35.6 7330 % 

 

0

5

10

15

20

25

30

35

40

System 1 System 2 System 3 System 3 (2T)

W
at

e
rm

ar
ki

n
g 

b
it

-r
at

e
 (M

B
/s

)

Segmark

Container

 
Figure 5. Comparison of the watermarking bit-rate 



72 

5.4. Test on Different Watermark Sequences 

In this test, we examine the effect on watermarking duration by using 

different watermark sequences. Because the DC values of JPEG blocks need to 

be adjusted only at the positions where a bit transition occurs, the duration of 

image rendering will vary for different watermark sequences. In this test, the 

same image set as in Section 5.2 is used. Each used watermark sequence is 16-

bit long as listed in Table 5.  

The bit transition rate decrease from the first sequence to the last one 

gradually. The first sequence denotes the worst case in which every two 

adjacent bits are different. The last one gives the other extreme case: no bit 

transition. From the test results listed in Table 5, we can see that the 

watermarking duration for the last sequence is approximately 20% shorter than 

the first one. Figure 6 illustrates visually the watermarking duration trend from 

the worst to the best case.  

 

Table 5. Test results for different watermark sequences 

 Trial 1 Trial 2 Trial 3 Average 

1) 1010101010101010  0.56 s 0.50 s 0.49 s 0.52 s 

2) 1100110011001100  0.47 s 0.53 s 0.48 s 0.49 s 

3) 0000111100001111  0.52 s 0.42 s 0.41 s 0.45 s 

4) 1111111100000000  0.39 s 0.41 s 0.47 s 0.43 s 

5) 0000000000000000  0.39 s 0.39 s 0.43 s 0.40 s 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

D
u

ra
ti

o
n

 (s
)

Watermark Sequence

 

Figure 6. Comparison of watermarking duration for different sequences 



73 

6. Discussion 

In this section, we discuss several issues regarding the image traceability by 

embedding available information as user identifiers in different web 

environments, and the security of digital fingerprinting against collusion 

attacks. 

In order to trace the source of unauthorized copies, the embedded 

watermark must be able to identify the image recipient. On the public Internet, 

only the available web-based information, e.g. IP address, may not be enough to 

exactly identify the recipient. Such information, however, still provides the 

source of piracy somehow. For instance, although the individual pirate can not 

be exactly identified by a single IP address, the IP address can still indicate the 

county, the city, or even the organization where the piracy copies come from.  

Furthermore, if the access to the images is somehow limited in a controlled 

environment, it will be much more effective and efficient to use digital 

fingerprinting for traitor tracing. For example, in an online shop and online 

gallery, users have to register first before they can view and download the 

images. In this case, the registered user ID can be used as a unique identifier 

and the traceability will be significantly improved. 

As well-known, collusion attack is a fundamental security problem for 

digital fingerprinting. Since every image copy becomes different from each 

other after embedding a unique identifier, one or many adversaries may collude 

together to use multiple copies to compose a new copy with no valid identifier 

embedded to avoid being traced, or even to create a new identifier to frame an 

innocent user. Block-based watermarking algorithms, which are most suitable 

for the watermark container framework, make such attacks even easier since 

each image block and each embedded watermark bit are independent of each 

other as we mentioned in Section 4.  

The problem of collusion attack and corresponding solutions has already 

been studied in many fingerprinting papers [7][8]. Here we only give a short 

discussion about the possible countermeasures in the case of web images. One 

solution is to use the so-called collusion-resistant fingerprint codes [9], which 

are able to identify the colluders. Unfortunately, such codes are usually too long 

to be embedded into web images, because they are commonly of small sizes and 

the watermark capacity is therefore quite low. Another possible countermeasure 

is the prewarping technique [10]. Before an image is delivered to the recipient, 

it is first be prewarped in a random way. The prewarping process introduces 

such slight distortion that the perception quality of the image is not degraded. 

Since each delivered copy is prewarped in different random ways, when 

multiple copies are used to make a collage or averaged, visible artifacts will 

appear and the quality of the composed image will be significantly degraded. 



74 

7. Conclusion 

The protection of digital images presented on the Internet has become an 

important challenge where still no solutions have been identified. One approach 

is transaction watermarking. But the computational cost of watermarking is 

usually too high for a web server to embed individual ID for every user without 

significant delays during web page access. In our work, we provide tests results 

of the implementation of a solution to this problem. We introduce the 

watermarking container concept, dividing the watermarking process into two 

stages. Implementation challenges and solutions, regarding suitable 

watermarking algorithms and JPEG format handling, are addressed. Test results 

demonstrate that very efficient embedding can be achieved by the proposed 

solution. 

Acknowledgements 

This work was supported by CASED (www.cased.de). 

References 

[1] The Guardian Online, Digital thieves swipe your photos - and profit from them, 

http://www.guardian.co.uk/technology/2008/jun/18/news.internet. 

[2] I. J. Cox, M. L. Miller, J. A. Bloom, Digital Watermarking. San Mateo, CA: 

Morgan Kaufmann, ISBN: 1-55860-714-5, 2001. 

[3] LANGELAAR, G. C., I. STEYAWAN, R.L. LAGENDIJK, Watermarking Digital Image 

and Video, IEEE Signal Processing Magazine, September 2000, vol. 17(5), pp. 20-

46. 

[4] STEINEBACH, M., S. ZMUDZINSKI, F. CHEN, The Digital Watermarking Container: 

Secure and Efficient Embedding, Proceedings of the 6th ACM Multimedia & 

Security Workshop, MM&Sec 2004, Magdeburg, Germany, September, 2004, pp. 

199-205. 

[5] LEWIS,A.S., G. KNOWLES, Image Compression Using the 2-D Wavelet Transform, 

IEEE Trans. Image Processing, Apr. 1992, vol. 1, pp. 244-250. 

[6] Joint Photographic Experts Group. JPEG File Interchange Format Version 1.02, 

September 1992, available at http://www.jpeg.org/public/jfif.pdf. 

http://www.guardian.co.uk/technology/2008/jun/18/news.internet
http://www.jpeg.org/public/jfif.pdf


75 

[7] BONEH, D., SHAW, J., Collusion-Secure Fingerprinting for Digital Data, IEEE 

Transactions on Information Theory, 1998, vol. 44, No. 5, pp. 1897-1905. 

[8] STEINEBACH M., ZMUDZINSKI S., Countermeasure for Collusion Attacks against 

Digital Watermarking, In Proc. of SPIE Conf. on Security, Steganography and 

Watermarking of Multimedia Contents VIII, 2006, vol. 6072, pp. 60720D.1-

60720D.9. 

[9] TARDOS G., Optimal Probabilistic Fingerprint Codes, In the Proceedings of the 

35th Annual ACM Symposium on Theory of Computing (STOC), 2003, pp. 116–

125. 

[10] CELIK, M. U., SHARMA, G., TEKALP, A. M., Collusion-resilient Fingerprinting 

Using Random Prewarping, Proceedings of International Conference on Image 

Processing, 2003, vol. 1,  pp. 14-17. 


