
From ODRL-S to Low-level DSL:
A Case Study Based on License Compliance in

Service Oriented Systems

Soudip RoyChowdhury1, G.R. Gangadharan2, Patricia Silveira1, and Vincenzo
D’Andrea1

1 University of Trento
Via Sommarive, 14, Trento, 38100 Italy

{rchowdhury,silveira,dandrea}@disi.unitn.it
2 Politecnico di Milano

Piazza Leonardo Da Vinci, 32 , Milan 20133 Italy
gangadharan@elet.polimi.it

Abstract. In this paper, we present a case study in the framework of
COMPAS, a research project focused on supporting compliance monitor-
ing and verification in service based systems. In this paper, we also illus-
trate how we translate high-level service licenses (specified in Open Dig-
ital Rights Language for Services (ODRL-S)) to low-level rules for veri-
fying the compliance requirements at runtime. We validate our approach
by architecting a compliance driven service oriented system, where at
runtime business processes are monitored for compliance.

1 Introduction

Licensing is the way for exploiting intellectual rights into software. Licenses
serve for developers to hold the control over consumers on the way they use the
software content. Consequently, developers rely on the contracts in the form of
license agreements to protect software from unauthorized consumption. Thus,
software licensing is considered to include all transactions between the licensor
and the licensee, in which the licensor agrees to grant the licensee the right to
use some specific software or contents of information for a specific tenure under
predefined terms and contracts [1].

Service Oriented Computing (SOC) allows the software-as-a-service concept
to expand to include the delivery of complex business process and transactions
as a service. It also allows applications to be constructed on the fly and services
to be reused everywhere and by anybody [2]. While software serves as a stand-
alone application, the rationale behind services is making network accessible
operations available anywhere and anytime. A consequence is that while software
is separately installed and executed using the computing resources internal to an
organization, a service is often executed using external resources. In addition,
while software is designed with particular use in mind, services are designed
to facilitate potential reuse as well as use in several contexts. The design of



From ODRL-S to Low-level DSL: A Case Study. . . 93

services supports loose coupling, wherein a service acquires knowledge of another
services, still remaining independent, and requests the execution of operations to
the other services. Software is designed to incorporate a set of specific functions
and usually not allowed to be integrated with other software chosen at runtime,
giving rise to interoperability issues. Further, software could be restricted by
the organizational boundaries and could not communicate with other software
crossing the boundaries. The fundamental of service orientation is to design
services to encourage composition. Thus, the said distinguishing characteristics
and nature of service prevent service directly to adopt the licensing models of
software.

The objectives of a service license are as follows [3].

– To define the extent to which the service can be used, on the basis that any
use outside the terms of the license would constitute an infringement.

– To have a remedy against the consumer where the circumstances are such
that the acts complained of do not constitute an infringement of copyrights.

– To limit the liability of service providers in case of failure of the service.

Optionally, a service license will also specify information on service delivery,
acceptance, and payment. We have formalized service license clauses and pro-
posed a language ODRL-S for defining service licenses in machine interpretable
way [3]. The anatomy of a service license includes clauses on Subject, Scope of
Rights, Financial Terms, Warranties, Indemnities, and Limitation of liabilities
(WIL), and Evolution (Figure 1) as detailed in [4].

Fig. 1. ODRL-S Licesne Model

ODRL-S Profile defines three new permissions that are directly related to the
types of uses of services- Adaptation, Composition and Derivation. The ODRL-



94 Soudip RoyChowdhury et al.

S Profile incorporates the NonCommercialUse constraint from the ODRL/CC
Profile and Payment Requirement from the ODRL Core Profile. The ODRL-S
Profile defines WIL model and also Evolution model (defined by ODRL-S as new
requirements).

In this paper, we validate the compliance of service licenses expressed in
ODRL-S, illustrated by a case study of COMPAS3. We have described a mecha-
nism that interprets ODRL-S licenses and transforms to low-level Esper4 rules.
Following this, we present a framework for license compliance verification during
runtime of a service-oriented system.

The remainder of the paper is organized as follows: In Section 2, we present
the case study in detail. Section 3 represents licenses of the case study in ODRL-
S, as an unambiguous representation of service licenses. Section 4 represents the
overview of validation of our approach in COMPAS project. Finally, Section 5
concludes and describes future work.

2 WatchMe Case Study Overview

In COMPAS project, our case study focuses on advanced telecom services of-
fered by a mobile virtual network operator (MVNO), named WatchMe. WatchMe
procures video and audio streams from different video and audio providers, com-
poses them in-house, and broadcasts them to end-users in-terms of service. In
this scenario, we have identified three compliance requirements regarding licens-
ing concerns (See Table 1), which need to be monitored during the composition
and acquisition of media streams. Such requirements regard only the services
invoked between providers and WatchMe.

Any non-compliant invocations could lead to costly penalties to a company,
in terms of money as well as reputation loss. Mitigating the risk of license vio-
lations is one of the concerns today services Industry is trying to address. Being
motivated by this fact, in our approach we tackle service licensing problem in
two ways. Firstly, we describe the service license in ODRL-S specification, so
that the domain experts (legal advisor or business analyst), who understand the
legal terms and condition as well as the business logic, can express service con-
straints and requirements in a more formal way which can be consumed by IT
eco-system. Secondly, we demonstrate how these license concerns can be linked
with the runtime system and translated to low-level conditions checking. This
translation enables runtime system to be automatically monitored in order to
identify potential violations, which may lead to high business risk.

3 Solution Overview

3.1 License Representation in WatchMe Scenario

Following the ODRL-S license model, we represent the license for WatchMe
scenario as follows. In our license representation, we visualize a service license
3 http://www.compas-ict.eu
4 http://Esper.codehaus.org



From ODRL-S to Low-level DSL: A Case Study. . . 95

Compliance
Require-
ments

Description Compliance
Risks

Rationale Control

Time-based
plan

When the
WatchMe com-
pany subscribes
for the Time-
based plan, it
acquires any
number of times
any possible
streams in a cer-
tain period, based
on the amount
paid to the media
supplier.

If WatchMe uses
streams outside
the 30 days pe-
riod, this leads to
violation of the li-
cense. This could
lead to claims
and reputation
damage.

When WatchMe
company sub-
scribes for the
time-based plan,
it has to pay
89.90 Euros first
and then receive
an unlimited
number of times
any available
stream from the
media supplier in
a 30 days period
starting from the
contract start
date.

Is Date be-
fore end of
period?

Pay-per-view
plan

When the
WatchMe com-
pany subscribes
for the Pay-per-
view plan, it
acquires a lim-
ited number of
streams based
on the amount
paid to the media
supplier.

If WatchMe
uses too many
streams, then this
leads to violation
of the license.
This could lead to
claims and rep-
utation damage.
If WatchMe uses
too few streams
with respect to
the acquired num-
ber of streams,
this leads to
(unnecessary)
costs.

When WatchMe
company sub-
scribes for the
Pay-per-view
plan, it has to
pay 29.90 Euros
first and then re-
ceive 300 streams
from the media
supplier.

Number
of streams
(before next
payment
has to be
made).

Composition
plan

Only pre-defined
combinations of
video and audio
providers are
allowed due to
the licenses speci-
fied by the video
provider.

When a wrong
combination of
video and audio is
used, this leads to
violation of the li-
cense. This could
lead to claims
and reputation
damage.

Video Stream
VideoTube can
only have audios
streams from
AudioTube or
QuickAudio.
QuickVideo can
only have audio
streams from
QuickAudio.

Audio-
Video
combination

Table 1. WatchMe License Requirements



96 Soudip RoyChowdhury et al.

as a set of offers indicated by <o-ex:offer> tag. A license contains declaration
of resource, identified by unique asset id, on which the license would be applied
to (line 2). This is followed by declaration of the fine grained process/service
endpoint description, followed by the information of its version (line 4 and 6).

Tag sets <o-ex:permission>, <sl:composition/>, and </o-ex:permission>
represent that the specified service is composable with other services (line 10).

<!-- Namespace declarations go here-->

1. <o-ex:offer>

2. <o-ex:asset o-ex:id="watchMe-video-service">

3. <o-ex:context>

4. <o-dd:uid>

urn: watchMe:service: watchMe-Provider1TimeBased_service

5. </o-dd:uid>

6. <o-dd:version> 1.0 </o-dd:version>

7. </o-ex:context>

8. </o-ex:asset>

9. <o-ex:permission>

10. <sl:composition/>

11. </o-ex:permission>

We define Financial Terms as a set of permission, requirement and constraint
tags. These tags are attached with some actions tag e.g., <o:dd-play>, which
implies the requirement and the constraint terms would be associated with a
specific action of the service (line 2). In our example, we have also defined the
corresponding plan associated with a license. As ORDL-S V1.0 does not have the
option to define plan type, we implement by creating WatchMe specific name
space, by which we can specify specific tags like plan type (line 5-6). Line 3
shows how in a service license, IT experts can specify which event is required to
be monitored for verifying the specific license requirements and constraints.

1. <o-ex:permission>

2. <o-dd:play>

3. <wm:event name="WatchMeGetVideoStreamEvent">

4. <o-ex:requirement>

5. <wm:plan>

6. <wm:type>TimeBasedplan</wm:type> </wm:plan>

7. <o-dd:prepay>

8. <o-dd:payment>

9. <o-dd:amount o-dd:currency="EUR">89.90</o-dd:amount>

10. </o-dd:payment>

11. </o-dd:prepay>

12. </o-ex:requirement>

13. <o-ex:constraint>

14. .

15. .

16. </o-ex:constraint>

17. </wm:event>

18. </o-dd:play>



From ODRL-S to Low-level DSL: A Case Study. . . 97

To check the control constraints in our scenario as specified in Table 1, we
use <o-ex:constraint> tag as defined in ODRL.

For Time Based plan we define the constraints as follows. <o-dd:datetime>,
<o-dd:start>, and <o-dd:end> tags are used to specify the start and end time
for the validity of the license.

1. <o-dd:play>

2. .

3. .

4. <o-ex:constraint>

5. <o-dd:datetime>

6. <o-dd:start>2008-01-01T12:30:00</o-dd:start>

7. <o-dd:end>2008-01-31T12:30:00</o-dd:end>

8. </o-dd:datetime>

9. </o-ex:constraint>

10. </o-dd:play>

For Pay-per-View plan we define the constraints as follows. <o-dd:unit>,
<o-ex:type>, and <o-dd:count> tags are used to specify the unit and type of
the constraints based upon which the counter would be run to check the validity
of the license. Here, if the number of video stream exceeds 300 count, then the
license terms are violated.

1. <o-dd:play>

2. .

3. .

4. <o-ex:constraint>

5. <o-dd:unit o-ex:type="watchMe:NumberOfStreams" />

6. <o-dd:count>300</o-dd:count>

7. </o-ex:constraint>

8. </o-dd:play>

For Composition plan, we define the constraints as follows. This license def-
inition specifies that AudioTube having uid A1 and QuickAudio having uid A2
are considered as the ApprovedAudioProviders to be composed in this specific
service context.

1. <o-dd:play>

2. <wm:event name="WatchMeGetAudioStreamEvent">

3. <o-ex:requirement>

4. <wm:combinations>

5. <wm:type>ApprovedAudioProviderOnly</wm:type>

6. </wm:combinations>

7. </o-ex:requirement>

8. <o-ex:constraint>

9. <o-ex:context>

10. <o-dd:name>ApprovedAudioProviders</o-dd:name>

11. <o-ex:constraint>



98 Soudip RoyChowdhury et al.

12. <o-ex:context>

13. <o-dd:name>AudioTube</o-dd:name>

14. <o-dd:uid>A1</o-dd:uid>

15. </o-ex:context>

16. <o-ex:context>

17. <o-dd:name>QuickAudio </o-dd:name>

18. <o-dd:uid>A2</o-dd:uid>

19. </o-ex:context>

20. </o-ex:constraint>

21. </o-ex:context>

22. </o-ex:constraint>

23. </wm:event>

24. </o-dd:play>

3.2 Translation of ODRL-S Based License to Low-Level (Esper)
Rules

In our case study, we have developed our system based on Event driven ar-
chitecture where business applications communicate with each other via com-
mon Enterprise Service Bus (ESB). Communications happen through underly-
ing enterprise-messaging service. In our implementation, we have used apache
activemq message queue5 for the messaging part. In COMPAS, we have used
an open source complex event processing engine Esper, which processes event
streams and discovers complex patterns among multiple streams of event data.
Event processing server listens to the message queue for event traces, processes
those events stream data and reacts to them as per the rules/condition specified
in the form of Esper rule. In our implementation, we translate license concerns
to corresponding Esper rules to verify compliance of the business processes at
runtime against event traces. Transforming high-level license concerns (written
in ODRL-S), to low-level domain specific rules (Esper rules) was not an easy
challenge to solve. The first challenge we had to tackle, was to associate the
license concerns with the corresponding events, so that Esper engine can verify
those constraints against related event data at runtime. To solve this challenge,
we have introduced IT-experts into the loop during the process of writing the
license, as explained in the previous section. The second challenge was to trans-
form the licenses to corresponding Esper rules. To solve this challenge, we have
introduced a License Translator component (as shown in Figure 2) into our ar-
chitecture. License translator translates ODRL-S licenses to Esper rules by using
pattern identification and template based translation.

Figure 2 shows that Domain experts and IT experts feed the system with
artifacts like Licenses as shown in the previous diagrams and event/process re-
lated information during design time. At the runtime system, License Translator
reads those inputs and produce low-level rules like Esper rules in our case. These
low level rules are consumed by the event processing engine, which checks and

5 http://activemq.apache.org/



From ODRL-S to Low-level DSL: A Case Study. . . 99

Fig. 2. Design time (ODRL-S) to runtime (Esper rules) conversion system

monitors the usage and legal concerns against the events generated by the run-
time system. Incase of violation, it takes corrective measures or reports to the
concerned person / reporting tool or to the compliance-monitoring dashboard
(see Section 4).

3.3 License Translator

License Translator takes ODRL-S licenses as input and finds the patterns in
it. In COMPAS, we deal with 3 types of patterns corresponding to the license
concerns as mentioned in Table 1. For example, the pattern corresponding to
Pay-per-view plan is the constraints on the number of streams.

1. <o-ex:constraint>

2. <o-dd:unit o-ex:type="watchMe:NumberOfStreams" />

3. <o-dd:count>300</o-dd:count>

4. </o-ex:constraint>

Similarly for Time-based plan, the pattern corresponds to constraints on
date-time attribute.

1. <o-ex:constraint>

2. <o-dd:datetime>

3. <o-dd:start>2008-01-01T12:30:00</o-dd:start>



100 Soudip RoyChowdhury et al.

4. <o-dd:end>2008-01-31T12:30:00</o-dd:end>

5. </o-dd:datetime>

License translator parses the xml files corresponding to the licenses and dis-
covers these patterns. Once it finds a specific pattern, License translator then
searches through the Esper rules templates as shown below, to find the corre-
sponding low level rule template.

1. Count pattern =

<rule1>

create window

PayPerViewWindow.win:keepall().std:unique(SessionID)

as

select SessionID, RequesterID from<event_name>

</rule1>

<rule2>

select count(*) from PayPerViewWindow

</rule2>

2. Date pattern=

<rule1>

create window

TimebasedWindow.win:keepall().std:unique(SessionID)

as

select SessionID, RequesterID from WatchMeGetVideoStreamEvent

where (<start_Time> > current_timestamp()) or

(current_timestamp() ><end_Time>)

</rule1>

<rule2>

select count(*) from TimebasedWindow

</rule2>

In our approach, IT experts analyze service licenses and create these low
level rules templates for each category of license. License translator binds the
constraint data retrieved from service licenses to the template and produces the
low level rules (as shown below), which are then consumed by Esper event pro-
cessing engine to check the compliance at runtime.

3. <?xml version="1.0" encoding="UTF-8" ?>

4. <license>

5. <ServiceUID>

urn: watchMe:service: watchMe-Provider1-PerUse_service

</ServiceUID>

6. <PlanType>Pay-per-view plan</PlanType>

7. <amount>29.90</amount>

8. <unit>watchMe:NumberOfStreams</unit>

9. <count>300</count>

10. <Esper>

11. <rule1>

create window



From ODRL-S to Low-level DSL: A Case Study. . . 101

PayPerViewWindow.win:keepall().std:unique(SessionID)

as

select SessionID, RequesterID from WatchMeGetVideoStreamEvent

</rule1>

12. <rule2>

select count(*) from PayPerViewWindow

</rule2>

13. </Esper>

14. </license>

Processing server monitors the event logs and based upon these rules, it
ascertains whether any violation has occured. In the above rule example, <rule1>
asks processing server to create a virtual window based upon unique SessionID
of the events. <rule2> specifies to count the number of entries in the window.
Esper server parses these rule files and finds the data and the low level rules.
During runtime, it finds the violation occurrences with respect to the constraints
specified in the licenses.

In COMPAS scenario, our approach is able to detect the compliance viola-
tions successfully at runtime against the license concerns related to audio-video
data broadcasting perspective. However, our approach can be extended to sup-
port all other kind of license concerns, which can arise in other business scenarios.
In future, we will extend our solution by making it more generalized to support
for diverse licensing scenarios.

4 Validation

Assessing whether a company’s business practices conform to laws and regula-
tions and follow standards and best practices, i.e., compliance governance, is
a complex and costly task. As a result, today it is very hard for any CFO or
CIO to answer questions such as: Which rules does my company have to comply
with? Which processes should obey which rules? Which processes are following
compliance sources? Where do violations occur? Which processes do we have
under control? [5]. Even more, it is hard to do so from a perspective that not
only satisfies the company but also the company’s auditors, which is crucial as
the auditors are the ones that certify compliance. In COMPAS project we show
how to address these issues, which concepts and models underlie the problem,
and, eventually, how IT can effectively support compliance analysis in Service
Oriented Architectures (SOAs) keeping compliance experts in the loop [6].

To address the compliance requirements in COMPAS, we have proposed a
conceptual model (See Figure 3) for compliance along with a compliance gover-
nance Dashboard [6] architecture, which is targeted for several classes of users:
chief officers of a company, line of business managers, internal auditors, and ex-
ternal auditors (certification agencies). The aim of dashboard is to report on
compliance, to create an awareness of possible problems or violations, and to
facilitate the identification of root-causes for non-compliant situations.

In COMPAS, we have developed an event driven architecture where events
generated by Business process engine are published in the ESB, which afterwards



102 Soudip RoyChowdhury et al.

Fig. 3. Conceptual model for compliance requirements in COMPAS

are stored in the Event log. After that, an extraction, transformation, and load
(ETL) routine is executed to capture those raw data events and to store them
into the Data warehouse (DW). These events structured according to a data
model can be used as input for the analyzing of compliance requirements and
computing Key Compliance Indicators (KCIs). Figure 4 shows the high level
view of COMPAS runtime architecture.

Fig. 4. Runtime Architecture of COMPAS Compliance governance

For checking the license concerns at runtime, in COMPAS we have devel-
oped an interface between Runtime compliance monitoring (which checks the
compliance concerns against generated events) and License translator. License
translator translates high level ODRL-S licenses (e.g. pay-per-view plan, Time-
based plan) to corresponding low-level Esper rules. Esper event processing en-



From ODRL-S to Low-level DSL: A Case Study. . . 103

gine, which is also a part of runtime compliance monitoring (Figure 4), takes
those low level Esper rules as input and check against the events associated with
those rules. Incase of occurrence of any violation of requirements as specified in
the license, it reports to the compliance governance dashboard6.

5 Conclusions

In this paper, we described the compliance requirements in the COMPAS project
from the licensing perspective by architecting an event driven IT system. Based
on a case study, we presented how service licenses in ODRL-S can be translated
to a low level (Esper rules) DSL so that license compliance of the system can
be validated at runtime. In our future work, we are planning to develop an user
interface framework for domain experts to specify licenses in ODRL-S format in
a more user friendly manner rather than writing in xml files.

Acknowledgments

This work is carried out under European commission project COMPAS and is
supported by funds from the European Commission (contract N 215175 for the
FP7-ICT-2007-1 project COMPAS).

References

1. Classen, W.: Fundamentals of Software Licensing. IDEA: The Journal of Law and
Technology 37(1) (1996)

2. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson, Prentice Hall
(2008)

3. Gangadharan, G.R., D’Andrea, V.: Licensing Services: Formal Analysis and Im-
plementation. In: Proceedings of the Fourth International Conference on Service
Oriented Computing (ICSOC’06), Chicago, USA. (2006) 365–377

4. Gangadharan, G.R., D’Andrea, V., Iannella, R., Weiss, M.: ODRL Service Licens-
ing Profile (ODRL-S). In: Virtual Goods: Technology, Economy, and Legal Aspects.
Nova Publishers, USA (2008)

5. Bellamy, R.K.E., Erickson, T., Fuller, B., Kellogg, W.A., Rosenbaum, R., Thomas,
J.C., Wolf, T.V.: Seeing is believing: designing visualizations for managing risk and
compliance. IBM Syst. J. 46(2) (2007) 205–218

6. Silveira,P., Rodŕıguez,C., Casati,F., Daniel,F., D’Andrea,V., Worledge,C., Taheri,
Z.: On the Design of Compliance Governance Dashboards for Effective Compliance
and Audit Management. In: Proceedings of NFPSLAM-SOC’09. (2009)

6 http://compas.disi.unitn.it:8080/CGDs/dashboard.jsp


