Reality vs. Security Model vs. Software —
Bridging the Gaps
Extended Abstract

Daniel Pahler

Institute for Information Systems Research, University of Koblenz-Landau, Germany
tulkas@uni-koblenz.de

Introduction

In [4], it was shown that existing formalizations of Digital Rights Management
share some common weaknesses, for instance their vendor-centric point of view or
the fact that they only distinguish between “legal” and “illegal”, without allowing
for a “gray area”. A list of requirements for a new DRM model was derived, and a
formal model was introduced that fulfills these requirements. This formal model,
which has in the meanwhile been named “Formosa” (Formal Model for Secure
Actions), follows in the tradition of other IT security models, as described by
Grimm [1]. It specifies secure system states and rules for allowed state transitions
which, if adhered to, aim to fulfill the superior security objective that each
actor should be able to subjectively feel secure. Also similar to other IT security
models, Formosa is not just meant to describe an existing situation, but to
provide a sound basis for implementations that fulfill the same security objective.
Therefore, the work on Formosa uses the research method of “Design Science
Research” [5].

Reality versus Security Model

This section lists the challenges that have turned up in the process of creating
Formosa on the basis of assumptions about the real world.

The general problem of modeling

In IT security models as well as in every other type of model, one central aim
is to reduce complexity through abstraction. Inevitably, aspects of the original
scenario have to be left out, and it can be difficult to decide which aspects these
should be. Particularly during the first steps of creating a formal model, a trade-
off is often necessary. On one hand, each feature that is added could turn out
to be useful or even necessary later. On the other hand, each additional feature
also makes the model more complex and might violate the scientific principle of
“Occam’s Razor”!. In an informal model, e.g. in a UML class diagram, changes

! As Heylighen explains in [2], “[Occam’s Razor| admonishes us to choose from a set
of otherwise equivalent models of a given phenomenon the simplest one.”



might be easy to perform later in the development process; classes can be deleted
or added, and it is rather easy to see which other classes are influenced by a
change. In Formosa, there are numerous definitions that build on each other,
and if one of the basic definitions is changed, each other definition has to be
checked and possibly changed, too.

At first, ODRL 2.0 could be used as a kind of template for Formosa. It was
considered that if entities such as assets, actors, permissions or duties could be
used to describe usage control in real-world uses cases, they would provide a
good foundation for a formal model. But since ODRL 2.0 itself is not formal and
cannot reasonably be formalized (as pointed out in [4]), some features had to
be left out. As a concrete example, Formosa was first created without a notion
of time to avoid making an already complex model even more complex. Only
lately was the decision made to include time so that temporally limited rights
expressions and duty deadlines can be expressed. The downside is that Formosa
is now even more difficult to understand than it was before.

Choosing an adequate notation

In order for Formosa to be both comprehensible and accurate, an appropriate
notation has to be used. The current notation, which mainly uses mathematical
set expressions, has the advantage that it allows for precise expressions and is
still relatively easy to read for researchers in the area of computer science. But
it is unclear if there exist other notations that could allow for expressions which
are easier to read and write, or which could even be interpreted by a computer.
The latter would not only help unveil errors in the model, it could also help
when creating an implementation of the model.

This challenge is currently being worked on in a master’s thesis. The student
will first try to get a broad overview of modeling methods (and thus, notations)
used in the area of computer science and group them into clusters of similar
methods. In the next step, he will analyze the aptness of some methods for the
creation of IT security models in general and Formosa specifically, pointing out
the advantages and disadvantages of each method. Eventually, this thesis’ goal
is to aid in finding the ideal notation.

Checking the real world assumptions

One fundamental innovation of Formosa, when compared to other IT security
models, is the fact that it allows for a “legal gray area”. Actors might perform
illegal actions and still be in a legal state (if they are still able to pay a fine for
their actions). In this regard, Formosa was created to reflect user behavior more
realistically. It is assumed that many users behave “a little illegally” without
feeling guilty about it, and that a DRM model should therefore distinguish
between minor misdemeanors and actual crimes.

But the question arises, “Is this a valid assumption?”. The facts that many
legal systems also make this distinction, and that trivial offenses are often con-
sidered socially acceptable point to “yes”, but can this be proven?



It is the goal of a master’s thesis that was recently started to find an answer
to the above questions. The student’s method is that of a literature analysis.
Several studies about users’ attitudes toward DRM and DRM-related problems
exist and should provide a good data basis for the analysis.

Security Model versus Software

When an IT security model is stable enough, it is desirable to transfer it into an
implementation. In terms of the Design Science Research method, this step is
needed for (and is already part of) the evaluation of the artifact created before.
For Formosa, its similarity to the concept of Usage Rights Management (URM)
[3] makes the Java-based URM implementation “TURM” (Toolkit for URM)
a particularly attractive platform for an implementation. TURM can already
deal with ODRL licenses as well as assets, and it tries to help the user keep
an overview of their legal situation. But it turns out that the transition from
the model to software is not trivial. The challenges outlined below are currently
being worked on in a master’s thesis that aims to implement Formosa in TURM.

Features that were left out in Formosa

As was shown above, several features were deliberately left out in Formosa to
avoid making it too complex. But in object-oriented software such as TURM,
these features can more easily be dealt with, particularly those that are already
part of TURM. For instance, Formosa has no notion of count constraints (e.g.,
“Alice is allowed to send the file xyz.mp3 to at most 3 other persons.”), whereas
TURM does support them to a certain degree. In how far can the TURM im-
plementation of Formosa make use of these features and still be an accurate
representation of the model?

“Open” definitions in Formosa

In order to deal with real-world situations where potentially unlimited amounts
of entities can occur, Formosa uses a number of “open” definitions. This means
that some sets like Actors are defined to include all actors, without listing them
explicitly. Other sets like Actiontypes are defined with some exemplary elements
(use, copy, buy, ...), but are meant to be extended for specific use cases. Finally,
many functions are defined as so-called “oracle functions” they cannot actually
compute output values for specific inputs, but they have to use lookup tables
to find the right output for the respective input (e.g., cost returns the cost of a
specific action). Obviously, these lookup tables also have to be defined depending
on the specific use cases. Since the implementation cannot work with Formosa’s
open definitions, it has to be configured to use concrete values. But where do
these values come from, and who should be able to configure them?



Controllability and observability

As was pointed out in [4], DRM systems often have the problem that in order
to be effective, they need to have control over the user’s domain. Only if it can
be assured that a user has no means of circumventing a restrictive DRMS does
it make sense to use this DRMS (hence, assets are usually encrypted).

URM as well as Formosa follow a different approach: they do not use any
rights enforcement measures and give the user the freedom to decide for them-
selves whether they want to behave legally or not. One advantage of this is the
fact that users can use assets managed by TURM with the same software that
they would use for unmanaged assets. For Formosa’s implementation, this turns
out to be a problem. Even though Formosa does not necessarily control actions,
it needs to observe them. In the purely theoretical domain of Formosa as an IT
security model, it is defined that each action can lead to a state change. But in
the implementation, actions that cannot be observed obviously cannot lead to
state changes.

A first approach to solve this problem includes a demon process which is
always running and which can record certain events in the system; for other
events, the user has to “manually inform” Formosa. It is still an open question
how useful this approach can be in practice.

References

1. Ridiger Grimm. A Formal IT-Security Model for a Weak Fair-Exchange Coopera-
tion with Non-Repudiation Proofs. In SECURWARE 2009, The Third International
Conference on Emerging Security Information, Systems and Technologies, Athens,
18-23 June 2009. IEEE Computer Society Press, 06 2009.

2. Francis Heylighen. Occam’s Razor. Principia cybernetica web, 07 1997.

3. Helge Hundacker, Daniel Pahler, and Riidiger Grimm. URM — Usage Rights Man-
agement. In Jiirgen Niitzel and Alapan Arnap, editors, Virtual goods 2009, Nancy,
France, 09 2009.

4. Daniel Pahler and Riidiger Grimm. A formal Digital Rights Model without En-
forcement. In Virtual Goods 2011, 2011.

5. Vijay Vaishnavi and Bill Kuechler. Design Science Research in Information Systems.
website, 01 2004. last updated September 30, 2011.



